
Equilibrium in a complete-market endowment economy

Tianxiao Zheng
SAIF

1. Introduction

This lecture describes equilibria for a pure exchange infinite horizon economy with stochastic

endowments. This kind of economy is useful for studying risk sharing, asset pricing, and consump-

tion. We describe two market structures. Both are referred to as complete markets economies.

They allow more comprehensive sharing of risks than do the incomplete markets economies, or

economies with information- or enforcement- frictions.

This note is based largely on Stokey, Lucas, and Prescott, 1989.

2. Physical settings

There are I agents named 1, 2, · · · I. Agent i owns a stochastic endowment of one good yit(s
t)

that depends on the history of a stochastic process st = {s0, s1, · · · st}. The stochastic process st

(not necessarily Markov) is global and publicly observable and is common to everyone. Household

i chooses a consumption policy cit (cit(s
t) is also history-dependent) in order to maximize its utility

U i = max
{cit}∞t=0

E0

∞∑
t=0

βtiui(c
i
t)

In this note, we adopt an assumption widely employed in macroeconomics that βi = β.

Suppose that there exists a market where agents can trade claims to consumption. We consider

two market structures:

1. Arrow-Debreu structure with complete market in dated contingent claims

Here markets meet at time 0 to trade claims to consumption at all times t > 0 that are

contingent on all possible histories up to t.

2. Sequential trading structure with complete one-period Arrow securities

In this economy, agents trade only one-period-ahead state-contingent claims. Here trades

occur at each date t ≥ 0. Trades for history st+1–contingent date-t + 1 goods occur only at

the particular date t history st that has been reached at t.

These two market structure entail different assets and timing of trades. As we will show, they have

identical equilibrium consumption allocations. Furthermore, although the endowment depends on

history st, after trading the equilibrium consumption allocation at time t depends only on the
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aggregate endowment realization at time t and initial distribution of wealth. The information and

enforcement frictions will break this result.

If trading is allowed, a feasible consumption allocation should satisfy

I∑
i=1

cit(s
t) ≤

I∑
i=1

yit(s
t), ∀st

3. Pareto optimality of allocation

An allocation is said to be efficient if it is Pareto optimal: it has the property that any reallo-

cation that makes one agent strictly better off also makes one or more other agents worse off.

To find the optimal consumption allocation of the economy in the previous section, imagine a

fictitious social planner. The planner chooses consumption allocation ci = {cit}∞t=0, i = 1, 2, · · · , I
to maximize

I∑
i=1

θiU
i(ci),

subject to
∑I

i=1 c
i
t(s

t) ≤
∑I

i=1 y
i
t(s

t). If the consumption allocation ci solves the planner’s problem

for a set of nonnegative θi’s, then the allocation is Pareto optimal. The Lagrangian of the planner’s

maximization problem is

L =
∞∑
t=0

∑
st

[
I∑
i=1

θiβ
tui(c

i
t(s

t))πt(s
t) + λt(s

t)
I∑
i=1

(yit(s
t)− cit(st))

]
.

where πt(s
t) is the unconditional probability of observing a particular sequence of events st.

The first order condition with respect to cit(s
t) is given by

θiβ
tu′i(c

i
t(s

t))πt(s
t) = λt(s

t),

which implies
u′i(c

i
t(s

t))

u′1(c
1
t (s

t))
=
θ1
θi
.

As a result, cit(s
t) = u′−1i [θ−1i θ1u

′
1(c

1
t (s

t))]. Substituting cit(s
t) into the constraint gives

I∑
i=1

u′−1i [θ−1i θ1u
′
1(c

1
t (s

t))] =
I∑
i=1

yit(s
t),

with which we can solve for c1t (s
t). Therefore, given θi, c

i
t(s

t) depends only on the current realization

of the aggregate endowment, not on the history st or the distribution of individual endowments

realized at t.

Proposition 1. An efficient allocation is a function of the realized aggregate endowment and de-

pends neither on the specific history leading up to that outcome nor on the realizations of individual
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endowments; cti(s
t) = cτi (s̄τ ) for st and s̄ such that

∑
j y

t
j(s

t) =
∑

j yj(s̄).

4. Time 0 Trading

We now describe how an optimal allocation can be attained by a competitive equilibrium in

the Arrow-Debreu market. Households trade dated history-contingent claims to consumption. All

trades occur at time 0 after observing s0. After time 0 , trades that were agreed to at time 0 are

executed, but no more trades occur.

4.1. Complete market

In complete market, there is negligible transaction cost and perfect information:

• There is a price for every asset in every possible state of the world.

• A state-contingent claim can always be decomposed as a linear combination of Arrow securi-

ties.

Let q0t (s
t) denote the price of Arrow security that pays one consumption good if the state is st

and 0 otherwise. q0t (s
t) is also known as state prices. An asset claim can be broken into a collection

of Arrow securities. Assume that q0t (s
t) has already been priced in the market. Then this asset is

called redundant asset. Let {dt(st)} be a stream of claims on st-consumption good. The price of

this asset is given by
∞∑
t=0

∑
st

q0t (s
t)dt(s

t).

For example

• riskless consol : dt(s
t) = 1, then the price of this asset is

∞∑
t=0

∑
st

q0t (s
t).

• riskless strips: dt(s
t) = 1 if t = τ and 0 otherwise. Then the price of this asset is∑

sτ

q0τ (sτ ).

• Tail asset : The value of an asset for a particular realization of sτ . Let p0τ (sτ ) be the time 0

price (in unit of s0 consumption good) of an asset that entitles the owner to dividend stream

{dt(st)}t≥τ if history sτ is realized,

p0τ (sτ ) =

∞∑
t=τ

∑
st|sτ

q0t (s
t)dt(s

t).
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Normally, we convert the price unit to the unit of time τ , history sτ consumption good

pττ (sτ ) =
∞∑
t=τ

∑
st|sτ

q0t (s
t)

q0τ (sτ )
dt(s

t)) =
∞∑
t=τ

∑
st|sτ

qτt (st)dt(s
t).

Here, qτt (st) is the price of one unit of consumption delivered at time t, history st in terms of

the date τ , history sτ consumption good.

q0t (s
t) is determined in the equilibrium of the market.

5. Competitive equilibrium

The household’s problem

max
cit

E0

∞∑
t=0

βtui(c
i
t)

s.t.(Budget Constraint)
∞∑
t=0

∑
st

q0t (s
t)cit(s

t) =
∞∑
t=0

∑
st

q0t (s
t)yit(s

t) ∀i

(Market Clearing)
I∑
i=1

cit(s
t) =

I∑
i=1

yit(s
t) ∀st.

(1)

Because the units of the price system are arbitrary, one of the prices can be normalized at any

positive value. We shall set q00(s0) = 1, putting the price system in units of time 0 goods.

First order condition:

[cit(s
t)] : βtu′i(c

i
t(s

t))πt(s
t) = µiq

0
t (s

t),

which implies that for all (i, j)
u′i(c

i
t(s

t))

u′j(c
j
t (s

t))
=
µi
µj
.

Thus, ratios of marginal utilities between pairs of agents are constant across all histories and

dates. As a result, the competitive equilibrium is Pareto optimal. The associated Pareto weights are

θi = µ−1i . The shadow prices λt(s
t) of the planner’s problem is equal to Arrow-Debreu prices q0t (s

t).

That the allocations for the planner’s problem and the competitive equilibrium are aligned reflects

the two fundamental theorems of welfare economics. (See Green, Mas-Colell, and Whinston., 1995)

Example 5.1. Risk sharing

In this example, we consider the CRRA utility

u(c) =
c1−γ

1− γ
, γ > 0.
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The first order condition becomes

βtcit(s
t)−γπt(s

t) = µiq
0
t (s

t).

As a result,

cit(s
t)

cjt (s
t)

=

(
µi
µj

)−1/γ
.

The special result from the CRRA utility is that consumption allocations to distinct agents are

constant fractions of one another. Thus, there is extensive cross-history and cross-time consumption

smoothing.

We could set cit(s
t) = αi

∑
j y

j
t (s

t), where αi is agent i’s fixed consumption share of the aggregate

endowment. The equilibrium price is then

q0t (s
t) = µ−1i α−γi βt

∑
j

yjt (s
t)

−γ πt(st).
αi can be found by using the budget constraint.

∞∑
t=0

∑
st

q0t (s
t)αi

∑
j

yjt (s
t) =

∞∑
t=0

∑
st

q0t (s
t)yit(s

t)

5.1. Equilibrium computation - Negishi algorithm

1. Fix a positive value for one µi, say µ1 , throughout the algorithm. Guess some positive values

for the remaining µi ’s. Then solve equations

cit(s
t) = u′−1i [u′1(c

1
t (s

t))
µi
µ1

],

I∑
i=1

u′−1i [θ−1i θ1u
′
1(c

1
t (s

t))] =
I∑
i=1

yit(s
t),

for ci(s
t), i = 1, 2, ..., I.

2. Solve for the price q0t (s
t).

3. For i = 1, 2, ..., I, check the budget constraint. For those i’s for which the cost of consumption

exceeds the value of their endowment, raise µi , while for those i’s for which the reverse

inequality holds, lower µi.

4. Iterate 1-3 until convergence.

Multiplying all of the µi’s by a positive scalar amounts simply to a change in units of the price

system. That is why we are free to normalize as we have in step 1.
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6. Sequential trading

The Arrow-Debreu market structure is an idealized theoretical benchmark, which cannot cap-

ture the trading of financial assets such as stocks and bonds in actual economies. In this section,

we build on the insight that one-period securities are enough to implement complete market. We

describe a competitive equilibrium of this sequential-trading economy. With a full array of these

one-period-ahead claims, the sequential-trading arrangement attains the same allocation as the

competitive equilibrium that we described earlier.

6.1. Endogenous state variable

A key step in finding a sequential-trading arrangement is to identify a variable to serve as the

state in a value function for the household at date t. The insight here is that in the time-0 trading

economy, households hold a net claim to delivery of goods in the future,

W i
t (s

t) =

∞∑
τ=t

∑
sτ |st

qtτ (sτ )[ciτ (sτ )− yiτ (sτ )].

Therefore, W i
t (s

t) is the value of tail asset from the time-0 trading economy. It could differ from

0 for t > 0 because each household holds Arrow securities so that their future consumption could

differ from sum of endowments. However, as Arrow securities only redistribute the consumption at

each period,
I∑
i=1

W i
t (s

t) = 0.

In moving to the sequential formulation, we propose the state variable to match the value of

tail asset from the time 0 trading economy. Let ãit(s
t) denote the claims to time t consumption,

other than its endowment, that household i brings into time t in history st. The household then

faces a sequence of budget constraint,

c̃it(s
t) +

∑
st+1

ãit+1(st+1, s
t)Q(st+1|st) = yit(s

t) + ãit(s
t) ∀t .

There is a number of st+1 markets in one-period-ahead state-contingent claims to consumption.

At each date t ≥ 0, households trade claims to date t+1 consumption, whose payment is contingent

on the realization of st+1. The pricing kernel Q(st+1|st) gives the price of one unit of time t + 1

consumption, contingent on the realization st+1 at t+ 1, when the history at t is st.

Since we want to match the ãit(s
t) to W i

t (s
t), the minimum ãit(s

t) at each period is given by the

natural debt limit

Ait(s
t) = −

∞∑
τ=t

∑
sτ |st

qtτ (sτ )yiτ (sτ ).

Therefore, we also need to impose the following borrowing constraint on the sequential trading
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arrangement

−ãit+1(s
t+1) ≤ Ait+1(s

t+1).

The household’s problem

max
cit

E0

∞∑
t=0

βtui(c
i
t)

s.t.(Budget Constraint) c̃it(s
t) +

∑
st+1

ãit+1(st+1, s
t)Q(st+1|st) = yit(s

t) + ãit(s
t) ∀st, t, given ãi0(s0)

(Borrowing Constraint) − ãit+1(s
t+1) ≤ Ait+1(s

t+1) ∀st+1

(Market Clearing)
I∑
i=1

c̃it(s
t) =

I∑
i=1

yit(s
t) ∀st

(Market Clearing)
I∑
i=1

ãit+1(st+1, s
t) = 0 ∀st+1.

Lagrangian:

Li =

∞∑
t=0

∑
st

βtui(c̃
i
t(s

t))πt(s
t) + ηit(s

t)

yit(st) + ãit(s
t)− c̃it(st)−

∑
st+1

ãit+1(st+1, s
t)Q(st+1|st)


+
∑
st+1

νit(st+1, s
t)[Ait+1(s

t+1) + ãit+1(s
t+1)]

First order condition:

[c̃ti(s
t)] : βtu′i(c̃

i
t(s

t))πt(s
t) = ηit(s

t) ∀t, st

[ãt+1
i (st+1, s

t)] : ηit(s
t)Q(st+1|st) = ηit+1(st+1, s

t) + νit(st+1, s
t) ∀t, st, st+1

In the optimal solution to this problem, the borrowing limit will not be binding, and hence the

Lagrange multipliers νit(st+1, s
t) are all equal to zero. Therefore, we get the following equation,

Qt(st+1|st) = β
u′i(c̃

i
t+1(s

t+1))

u′i(c̃
i
t(s

t))
πt(st+1|st) ∀t, st, st+1

6.2. Competitive equilibrium

Definition 6.1. A sequential-trading competitive equilibrium is an initial distribution of wealth

ãi0(s0), an allocation {c̃it(st)}, and pricing kernels Qt(st+1|st) such that

• ∀i, given ãi0(s0) and Qt(st+1|st), the consumption allocation c̃it(s
t) solves the household’s

problem;
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• ∀st, the households’ consumption allocation and the implied asset portfolio {c̃it(st), {ãit+1}st+1}
satisfy the market clearing conditions

∑I
i=1 c̃

i
t(s

t) =
∑I

i=1 y
i
t(s

t) and
∑I

i=1 ã
i
t+1(st+1, s

t) = 0

for all st+1.

We are going to prove that

1. Given Qt(st+1|st) to be Qt(st+1|st) =
q0t+1(s

t+1)

q0t (s
t)

, where q0t (s
t) is the state price in the time-

0 trading economy, the equilibrium allocation of the time-0 trading economy is also the

sequential competitive equilibrium.

This can be shown by using the first-order condition for the time-0 trading economy βtu′i(c
i
t(s

t))πt(s
t) =

µiq
0
t (s

t), from which we get

Qt(st+1|st) = β
u′i(c

i
t+1(s

t+1))

u′i(c
i
t(s

t))
πt(st+1|st).

This is exactly the first-order condition for the sequential economy. It remains for us to

choose the initial wealth of the sequential-trading equilibrium so that c̃it(s
t) = cit(s

t). From

the budget constraint, we can get that∑
st+1

ãit+1(st+1, s
t)q0t+1(s

t+1) = [yit(s
t)− c̃it(st)]q0t (st) + ãit(s

t)q0t (s
t)

∑
st+1,st+2

ãit+2(st+2, s
t+1)q0t+2(s

t+2) =
∑
st+1

[yit+1(s
t+1)− c̃it+1(s

t+1)]q0t+1(s
t+1) +

∑
st+1

ãit+1(st+1)q
0
t+1(s

t+1)

∑
st+2,st+3

ãit+3(st+3, s
t+2)q0t+3(s

t+3) =
∑
st+2

[yit+2(s
t+2)− c̃it+2(s

t+2)]q0t+2(s
t+2) +

∑
st+2

ãit+2(st+2)q
0
t+2(s

t+2)

...

Adding the above equations all the way to infinity, we can get that

ãit(s
t) =

∞∑
τ=t

∑
sτ |st

[yiτ (sτ )− c̃iτ (sτ )]
q0τ (sτ )

q0t (s
t)
.

As can be seen, if c̃it(s
t) = cit(s

t), we have ãit(s
t) = W i

t (s
t). In this case, the market clearing

conditions will be satisfied. Also, ãi0(s0) = 0, i.e. the initial wealth of all agents is zero.

So the sequential-trading competitive equilibrium duplicates the Arrow-Debreu competitive

equilibrium allocation.

2. The borrowing constraint precludes household from further increasing current consumption

by reducing some component of the asset portfolio.

If the household wants to ensure that consumption plan can be attained starting next period

in all possible future states, the household should subtract the value of this commitment to
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future consumption from the natural debt limit

−ãit+1(s
t+1) ≤ Ait+1(s

t+1)−
∞∑

τ=t+1

∑
sτ |st+1

qt+1
τ (sτ )ciτ (sτ ) = −W i

t+1(s
t+1) ∀st+1

Hence, household i does not want to increase consumption at time t by reducing next period’s

wealth below W i
t+1(s

t+1).

7. Recursive formulation

In the sequential trading economy, the findings hold for arbitrary individual endowment pro-

cesses. At this level of generality, both the pricing kernels and the wealth distributions depend

on the history st, which makes it extremely difficult to formulate an economic model that can be

used to confront empirical observations. What we want is a framework where economic outcomes

are functions of a limited number of “state variables” that summarize the effects of past events

and current information. This desire leads us to make the following specialization of the exogenous

forcing processes that facilitate a recursive formulation of the sequential-trading equilibrium.

If the endowments are governed by a Markov process, Pr(st+1 = s′|st = s) = π(s′|s),

πt(s
t) = π(st|st−1)π(st−1|st−2)...π(s1|s0)π0(s0).

π(s0) is the initial distribution. Typically, we assumed that the trading begins after s0 has been

observed, which is captured by setting π(s0) = 1 for any given value of s0. Because of the Markov

property, the conditional probability π(st|sτ ) (t > τ) depends only on the state sτ at time τ and

does not depend on the history before τ ,

πt(s
t|sτ ) = π(st|st−1)π(st−1|st−2)...π(sτ+1|sτ ).

Next, assume that the endowments are history independent

yit(s
t) = yi(st).

It follows immediately from the equilibrium allocation (history independence) that

cit(s
t) = c̄i(st).

The pricing kernel is then

Qt(st+1|st) = β
u′i(c̄

i(st+1))

u′i(c̄
i(st))

π(st+1|st) = Q(st+1|st).
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Similarly, we can establish the history dependence of the wealth and the natural debt limit

W i
t (s

t) = W̄ i(st)

Ait(s
t) = Āi(st)

(2)

The above results enable us to formulate the households problem as a infinite horizon dynamic

programming problem. The associated Bellman equation is given by

V i(ai, s) = max
ci,âi

ui(c
i) + β

∑
s′

V i(a′i, s′)π(s′|s)

s.t.(Budget Constraint) cit +
∑
st+1

âit(st+1)Q(st+1|st) = yit + ait ∀t,

(Borrowing Constraint) − âit+1(st+1) ≤ Āit+1(st+1) ∀st+1

(transition equation) ait+1 = âit given ai0,

(Market Clearing)
I∑
i=1

cit =
I∑
i=1

yit

(Market Clearing)
I∑
i=1

âit+1(st+1) = 0 ∀st+1.

(3)

The optimal policy is

cit = hi(ait, st)

âit(s) = gis(a
i
t, st)

(4)

The envelope condition:
∂V i(ai, s)

∂ai
=
∂ui(a

i, âi)

∂ai
.

The first order condition:

0 =
∂ui(a

i, âi)

∂âi(s′)
+ β

∂V i(a′i, s′)

∂a′i
π(s′|s).

Because ∂ui(a
i,âi)

∂ai
= ∂ui(c

i)
∂ci

, ∂ui(a
i,âi)

∂âi(s′)
= −∂ui(c

i)
∂ci

Q(s′|s), the Euler equation could be written as

Q(st+1|st)u′i(cit) = βu′i(c
i
t+1)π(st+1|st).
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