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1. Introduction

We have studied single agent problems. However, macro-economy consists of a large number of

agents including individuals/households, firms and banks, governments, and central banks, etc. It

is now to leave the single-agent maximization setups and embark on the journey of macroeconomics.

Generalizing the single-agent maximization setup to the multiple-agent setting naturally leads

to what is known as dynamic stochastic game. Recall that the Markov decision process is a limiting

case of stochastic game with only one player. In this sense, macroeconomics is nothing else but a

dynamic stochastic game.

The refinement of Nash equilibrium in dynamic game is known as sub-game perfect equi-

librium. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium

of every subgame of the original game. As common in modern macroeconomics, players condition

their own strategies only on the payoff-relevant states in each period. In this case, the subgame

perfect equilibrium in dynamic games is a Markov perfect equilibrium. The concept of Markov

perfect equilibrium was first introduced by Maskin and Tirole, 1988. A Markov perfect equilibrium

is derived as the solution to a set of dynamic programming problems that each individual player

solves.

2. Dynamic stochastic games

2.1. Elements of dynamic stochastic game

• Decision epochs: T = 0, 1, 2, . . . , T , T ≤ ∞
• A set of n players I;

• A state space S;

• For each player i ∈ I, an action space A(i); A = ×n
i=1A

(i);

• A transition probability P from S × A to S. P (s′|s, a) is the probability that the next state

is in s′ given the current state s and the current action profile a;

• a payoff function u = (u(1), ..., u(n)) from S × A to RI ; u(i) is the payoff function to player i

as a function of the state s and action profile a;

• discount factor δ(i) of player i
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The game is played as follows. At time 1, the initial state s1 ∈ S is given. After observing the

initial state, players choose their actions a1 ∈ A simultaneously and independently from each other.

(In an equilibrium of a Stackelberg game, the timing of moves is so altered relative to the present

game that one of the agents called the leader moves first and takes into account the influence that

his choices exert on the other agent’s choices.) Player i receives a payoff u(i)(s1, a1). Then the state

evolves to s2 according to the probability P (s2|s1, a1). After observing s2, players choose their

action a2 ∈ A. Then players receive payoff u(i)(s2, a2), and the state of the system evolves again.

The game continues in this way. Note that repeated games are special case of dynamic stochastic

game with no state variables involved.

A general pure strategy for player i is a sequence σ(i) = {σ(i)
t }Tt=1. σ

(i)
t specifies a pure action to

be taken at date t as a function of the history of all states up to date t. If it is history independent,

then the strategy is said to be Markovian. For infinite-horizon games, if the payoff function and the

transition probability is time-invariant, then the strategy is stationary. Let σ = (σ(1), σ(2), ..., σ(n))

denote a Markov strategy profile.

The expected discounted payoff from a stationary Markov strategy is given by

U (i)(s1;σ) = (1− δ(i))E

[ ∞∑
t=1

(δ(i))t−1u(i)(st, σt(st))

∣∣∣∣∣s1

]
, i = 1, 2, ..., n

2.2. Markov perfect equilibrium

Definition: A Markov strategy σ∗ is a Markov perfect equilibrium if at any state st and any

history st

U (i)(st;σ
∗|st) ≥ U (i)(st; {σi, σ∗−i}|st), for all i and any σi.

It is a special case of subgame perfect equilibrium.

Example 2.1. The model consists of n firms selling output at each period. Firm i chooses a

production plan (yi,t) to maximize discounted profit

∞∑
t=0

βtiui,t =
∞∑
t=0

βti
[
ptyi,t − 0.5di(yi,t+1 − yi,t)2

]
subject to yi,0 being a given initial condition. Here βi ∈ (0, 1) is a discount factor, and di > 0

measures a cost of adjusting the rate of output. The adjustment costs give the firm the incentive to

forecast the market price pt. The market price pt lies in the inverse demand line

pt = A0 −A1(yi,t + y−i,t),

where y−i,t denotes the output of the firm other than i. Here, we encounter a typical feature in a

dynamic game: some quantity that one agent takes as exogenous are determined by all agents in

the market. Specific to this model, pt is determined by all the producers in the market.
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Setting the control variable for firm i to be ai,t = yi,t+1, the transition equation is then yi,t+1 =

ai,t. Firm i chooses a policy that sets ai,t as a function of (yi,t, y−i,t). Then associated Bellman

equation of firm i is

Vi(yi,t, y−i,t) = max
ai,t

ui,t(yi,t, ai,t) + βiVi(yi,t+1, y−i,t+1).

We see that to solve the optimization problem of firm i, we need all other firms’ strategies

aj,t = fj(yj,t, y−j,t). A Markov perfect equilibrium is a set of sequences {a1,t, a2,t, ..., ai,t, ..., an,t}
such that {a1,t} solves the above Bellman equation for i = 1 given {a2,t, ..., an,t}, {a2,t} solves the

above Bellman equation for i = 2 given {a1,t, a3,t..., an,t}, and so on. Each firm’s strategy depends

only on the state variable ~yt = [y1,t, y2,t, ..., yn,t]
′.

In general, solving a dynamic game (a set of n interrelated Bellman equations to be solved by

simultaneously backward induction) is hard. Below, we will introduce some sensible assumptions,

rendering the Markov perfect equilibrium easily tractable.

3. Competitive equilibrium

We make the following assumption about the population structure of 2.1

• There is a large (or infinite) number of firms.

As a result, the output of any single firm has a negligible effect on the aggregate output. (no

dominant player) Each firm is a price taker. This will lead to huge simplification of solving the

above example.

The Bellman equation for firm i is now

Vi(yi,t, y−i,t) = max
ai,t

A0yi,t −A1y
2
i,t −A1yi,ty−i,t − 0.5di(ai,t − yi,t)2 + βiVi(yi,t+1, y−i,t+1)

Vi(yi,t, pt) ≈ max
ai,t

A0yi,t −A1y
2
i,t −A1yi,ty−i,t − 0.5di(ai,t − yi,t)2 + βiVi(yi,t+1, pt+1)

(1)

where pt+1 ≈ A0 − A1y−i,t+1. If given the price pt+1, we could solve for the optimal policy ai,t as

a function of pt+1 and the state variable yi,t. Plugging ai,t into pt+1 = A0 − A1
∑

j aj,t, we could

solve for pt+1.

Definition 3.1. Competitive equilibrium

Competitive equilibrium is usually defined as given the price that equates demand and supply.

4. Recursive competitive equilibrium

Representative agent is a very useful concept in formalizing many economic problems in a par-

simonious way. It allows to define the competitive equilibrium recursively. We make the following

assumptions about the population structure of 2.1
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• There is a large (or infinite) number of firms.

• Every firm is identical.

Note that the assumption of each firm being identical amounts to dropping the distribution of

output size.

The Bellman equation for firm i is now

Vi(yi,t, y−i,t) = max
ai,t

A0yi,t −A1y
2
i,t −A1yi,ty−i,t − 0.5di(yi,t+1 − yi,t)2 + βiVi(yi,t+1, y−i,t+1)

Vi(yi,t, Yt) ≈ max
ai,t

A0yi,t −A1y
2
i,t −A1yi,tYt − 0.5di(ai,t − yi,t)2 + βiVi(yi,t+1, Yt+1)

(2)

where Yt =
∑n

i=1 yi,t ≈ y−i,t is the total output by all firms. We see that to solve the optimization

problem of firm i, we need the law of motion for Yt

Yt+1 = H(Yt).

Since every firm is identical, we could drop the subscript i in the Bellman equation. Based on

the above discussion, we could come up with a recursive way to find the equilibrium of the model,

1. given H, find the optimal policy of the Bellman equation, at = yt+1 = h(yt, Yt).

2. form the law of motion for Yt according to the optimal policy Yt+1 = nh(Yt/n, Yt) = H ′(Yt).

3. given H ′, repeat step (1) and (2) until convergence is attained.

The firm’s optimum problem induces a mapping M from a perceived law of motion for Yt, H

to an actual law of motion M(H). H is a fixed point of the operator M. A recursive competitive

equilibrium equates the actual and perceived laws of motion.

For convenience, we usually set the number of firms n to be 1. In the second step of the above

procedure, we impose Yt = yt so that Yt+1 = h(Yt). Note that this is only after we have solved the

representative agent’s decision problem.

Definition 4.1. Recursive competitive equilibrium of infinite horizon optimal control problem.

Let X be the vector of x of the market. The representative agent’s problem is characterized by

the Bellman equation

V (x, z) = max
a∈Γ(x,z)

u(x,X, a, z) + βEtV (x′, X ′, z′),

with the transition equations

x′ = φ(x,X, a, z),

X ′ = Φ(X, z),

z′ = ζ(z).

(3)
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The optimal policy of the representative agent’s problem is

a = g(x,X, z)

Substituting this equation into the transition equation of x yields

X ′ = nφ(X/n,X, g(X/n,X, z), z) = φ(X,X, g(X,X, z), z) = Φa(X, z).

A recursive competitive equilibrium is a policy function g, an actual aggregate law of motion Φa, and

a perceived aggregate law Φ such that (a) given Φ, g solves the representative agent’s optimization

problem; and (b) g implies that Φa = Φ.

Recursive competitive equilibrium is also sometimes called a rational expectations equilibrium.

The equilibrium concept makes Φ an outcome of the analysis. The functions giving the represen-

tative agent’s expectations about the aggregate state variables contribute no free parameters and

are outcomes of the analysis. There are no free parameters that characterize expectations.

Example 4.1. The economy consists of a firm and a large number of n households. The firm faces

a wage process wt and chooses a plan for hired labor Lt to maximize,

E0

∞∑
t=0

βt{f0 + (f1 + θt)Lt − f2L
2
t /2− wtLt},

subject to the transition equation θt+1 = ρθt+σεt+1. A representative household chooses an amount

of labor (st) to send to school that takes four periods to produce an educated worker. It maximizes

E0

∞∑
t=0

βt
(
wtlt −

d

2
s2
t

)
,

subject to the law of motion lt+1 = δlt + st−3.

• The state of the economy is given by {θt, lt+3}.
• The policy of the firm is simple (Note that in this example, we do not need the policy of

households in order to solve the problem of the firm.)

f1 + θt − f2Lt = wt.

This could be viewed as the inverse demand line for the stock of labor Lt = nlt.

• Given the policy of the firm, we maximize the value function of the household

E0β
3
∞∑
t=0

βt
(
wt+3xt −

d

2β3
s2
t

)
,

where xt = lt+3 is the state variable. The transition equation is now xt+1 = δxt + st. By

5



setting xt+1 = at, we have st = at − δxt. The maximization problem becomes

max
at

E0

∞∑
t=0

βt
(
wt+3xt −

d

2β3
(at − δxt)2

)
,

subject to xt+1 = at. The Euler equation is given by

d

β3
st = βEt

[
wt+4 +

dδ

β3
st+1

]
.

Using the method of lag operator, the Euler equation can be written as (1 − δβL−1)st =

d−1β4Etwt+4. As a result,

st = d−1β4
∞∑
j=0

(δβ)jL−jEtwt+4 = d−1β4
∞∑
j=0

(δβ)jEtwt+j+4.

The law of motion is therefore, lt+1 = δlt + st−3.

lt+4 = δlt+3 + d−1β4
∞∑
j=0

(δβ)jEtwt+j+4.

• Recursive competitive equilibrium of households

the big K, little k trick gives

Lt+4 = δLt+3 + d−1β4
∞∑
j=0

(δβ)jEtwt+j+4.
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