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1. Introduction

Solving the infinite-horizon optimal control problem often gives rise to the following first-order

nonlinear system

0 = uq (4, 20, ar) + PEpri+10a(e, 2t Aty 2e41), >0
pt = (e, 2, ay) + BEiptg 102 (2, az, 2e, 2641), t>1
Tp1 = O(Te, ap, 2, 2441), X0 given, t >0

2t41 = Pz + Xegr1, 2o given, t >0

{2z} is a bounded R"™#-valued stochastic process, ® is an n, X n, matrix, ¥ is an n, X n. matrix,
and {41} is a stochastic process satisfying Ese;41 = 0 and Eeyq1€;; = 1.

Many macroeconomic problems can be described by the above system. As we possess a kalei-
doscope of tools to deal with linear system, the first-order nonlinear system is usually linearized

around its non-deterministic steady state. The resulting linear system is then solved and analyzed.

[

Example 1.1. Consider the following problem as an example

S
max lﬁ) Btlog(%
{Ct,Kt41}32, tz;

subject to
Ky = ZiKy — Gy

where 5, a € (0,1) and Z; satisfies

log(Zi41) = plog(Z;) + oe41

! For higher order treatments, see for example (1)http://www.columbia.edu/~mu2166/2nd_order.htm; (2) http:
//www.nber . org/papers/w18983


http://www.columbia.edu/~mu2166/2nd_order.htm
http://www.nber.org/papers/w18983
http://www.nber.org/papers/w18983

Solving the problem yields the following set of system equation,

Kiyn = ZiK¥—Cy
1 1
- Ey—— 7, 1 K1
Ct @6 t[Ct+1 t+1 t-‘rl}

Deterministic steady state satisfies the following equation (in the deterministic case, Zy = 1):

K = K*-C
1 = afK*!

Therefore, K = ()1~ and C = K(K*' —1) = (o)1= (1/(af) — 1).
Defining K; = I_(exp(l;:t) and Cy = Cexp(é), where k; and ¢ are the percentage deviations
of capital and consumption around their deterministic steady state, and plugging them into system

equations, we obtain

KGXP(]A%H) = Zexp(2)K® exp(l%ta) — Cexp(ér)
1 1 _ _ .
- = Eifl=——F+—7 S ) KL k -1
C exp(ér) o] exp(Cr+1) p (1) (ke )
Here, we define Z; = Zexp(%), where Z is the steady state mean of Z;. Because log(Ziy1) =
plog(Z;) + oeyy1. Therefore, Z = 1 and 2441 = p2s + ocip1. Using the first Taylor expansion,

exp(z) =~ 1+ x for x near 0, we have

1 )A n 1
—)é + —2
af ! af !
E (1 — a)]%tJrl + 1] = G+ pi

. 1.
ki1 = Ekt +(1—

Defining xy = [k, ¢, we get
AEtl't—&-l = Ba:t + CZt

where

A=

oo (am—l]

p

1 0]7 leﬁ—l 1— (af)
1-a 1 0 1

In this lecture, we introduce the method to solve linear rational expectations models:
AEtJZH_l = BCEt + CZt y (2)

Here, z; € R™ is a random vector, A and B are n X n matrices, and C' is a n X n, matrix.



2. Scalar Equation

In this section, we consider the scalar first-order equation (n =n, =1 in Eq.

Etl'tJrl = bl’t + ¢zt

(3)

For example, the asset-pricing equation is of form Eq. |3, pr = w, where R > 1 and d;

satisfies d; = pdi_1 + o€
Iterating Eq. [3| backward, we obtain the backward looking solution:

t—1
Ty = thL'o + CZ bjzt,j,1

§=0
Iterating Eq. |3| forward, we obtain the forward looking solution

T-1

-7 —j—1
xp=b "Exir —c E b Bz
=0

p

In general, the solution to Eq. [3|is given by z; = z} + x¥, where 2% is a particular solution to
(2) and ] is the solution to the homogeneous equation Et:niﬁrl = br}. To find 27, we introduce

the widely adopted method: the lag operator method. The lag operator on any stochastic process

{X:} is defined by
EJXt = Xt_j, Eint = ]EtXt-‘rja .7 >0.

Using the inverse of lag operator, Eq. [3| can be rewritten as
(L7 = b)ay = ez

There exist two forms of particular solutions z%:

e forward looking solution

¢ 1 N il i i1
mf——bl_b_lﬁ_lzt——cjzob I L Jzt——CjZOb T B2y

if |b| > 1, then the infinite sum above is finite since z; is a bounded sequence.

e backward looking solution

c 1 [e.9] o0
P _ _ jpi+l, ] .
T= ] gt C]E_Objﬁj 2 = C]E_Ob]thl

if |b| < 1, then the infinite sum above is finite since z; is a bounded sequence.

Now we proceed to find z} satisfying Et$?+1 = baf'. There also exist two forms of solution

(4)



e forward looking solution x? = b_TEtxHT
Transversality condition (or no-bubble condition): lim7 oo b~ Eizsyr = 0
e backward looking solution Eo:c? = blag

Initial condition xy should be given here, or else the solution is indeterminate.

If no transversality or initial condition is given, z! admits many solutions so long as x} satisfies
h _ h

Eyz | = bxy.
In this example, we have shown that two conditions are important for solving a linear difference

equation:

e whether the initial value is given;

e whether the coeflicient b is smaller than one in absolute value.

We will show below that similar conditions apply to general multivariate linear systems. In
particular, the first condition determines whether the variable x; is predetermined, and the second

condition corresponds to whether the eigenvalue is stable.

3. Blanchard-Kahn method

We focus on the case of invertible A where the method of [Blanchard and Kahnl [1980| can be
applied. (Klein, 2000| allows A to be singular, where generalized Schur form was employed) Eq.
can be rewritten as

Eixip1 = A 'Bxy+ A0z .

As usual, we proceed from here by diagonalizing W = A~!B first. However, in the general
cases, it is only possible to represent W in the Jordan form such that W = P~1JP, where J is a

Jordan matrix:

J1
Jo

Ji

The Jordan blocks J; (i = 1...1) are matrices composed of 0 elements everywhere except for the
diagonal, which is filled with a fixed element A, and for the superdiagonal, which is composed of

ones.

—

Here, A are the eigenvalues of W.
Defining z; = Pz; and C* = PA™1C

Eixyy = Joy +C % .

4



In economics, we are most interested in the saddle path solution to the above equation, where
the modulus of some \; is greater than 1 and the others less than 1. As will be shown later, this
has to do with the fact that initial value of some components of x; are not exogenously given,
or non-predetermined. We have ruled out the case when some of the eigenvalues are on the unit
circle (|A;] = 1), because generally this leads to unstable behavior. As |\;| > 1 leads to explosive
behavior, we partition the system into two parts: |[\;| > 1 (n, of them) and |[\;| <1 (ng =n —n,

of them). Jordan matrix J is partitioned as

J,
Ju

where Js contains all |\;| < 1 and J, all |N\;] > 1.

xy and C* are partitioned accordingly,

St
* J—
-rt -_—

Ut

As a result, the system can be written as

o JS 0 St
B 0 Ju (7

We first take care of u;. Applying the lag operators, we have

Cs
Cu

E
tSt+1 2 (5)

Eiug 1

[flut = Juut + C;Zt.

The solution to wu; is straightforward
u=—(Ju— L) Crz = =T, (1= L7 ) Chz = — Z T T Cr Bz (6)
§=0

Here, J, contains all the |\;| > 1, so as long as z; is a stable stochastic process the above sum series
converges.

Transforming back to x; (remember x} = Px;), we have

St
Ut

We have partitioned x; as [ki, y;|’, where vector y; contains n, non-predetermined components and

k¢
Yt

Psk: Psy
Puk: Puy

=P

"’t] . (7)

Ut

ki contains nj = n — ny predetermined components. Therefore,

st = Psyyr + Pk, (8)
ut = Puyyt + Puiky. (9)



In particular, we consider

uo = Puyyo + Purko

, where kg is predetermined, ug can be derived from the above equation. P, is an n, X n, matrix.
If n, > ny, there can be no solution for yo. If n, < n,, there can be infinitely many solutions for

yo. We therefore consider the case where the Blanchard-Kahn condition is satisfied:

® 1y = Ny, i.e. the number of unstable eigenvalues is equal to the number of non-predetermined
variables. (forward-looking variables)

e P,y is invertible.

Under the condition, we have
yr = Poylue — Pyl Pupk . (10)

To solve for k;, we use the following definition
ky
Yt

Note that E;si11 = Jgs¢ + Crz. According to Blanchard and Kahn, 1980, Eikiy1 = Kiga.

Therefore, we have s¢11 = Jgs¢ + Crz; and

Rks Rku
Ry,s Ry,

_p1|%

] , (11)

Ut Ut

to get

kiy1 = Rpssir1 + Rpuuert

kt—‘,—l = Etkt+1 = Rks(Jsst + C:Zt) + Rku(Juut + szt)
- Rks(Js(Pskkt + Psyyt) + C:Zt) + Rku(Juut + szt)
= Rps(Js(Pakt + Pay(Poy ur — Poy! Purke)) + Cizt) + Riu(Juur + Cryzi) (12)

Because Rys(Psi — Psyp@lpuk) =1,
Fie1 = Rus sy ke + (RiuCy + RisCl)ze + (RiuduPuy + RisJsPoy) Poy . (13)

Note that RkstR;;; has the same eigenvalues as J;. So the evolution of k; is stable. Eqgs. |§|,
and [13] form the solution to the problem of Eq. [2} If the z; is given, the solution can be simplified,

v = Ayrke+ Ay
kiy1 = Apike + Apzz
zip1 = Pz 4+ e (14)

InKlein| 2000|, predetermined variables are defined with an prediction error 41 = ki1 —Erkit1.

& is an exogenously given martingale difference process (Ei&t+1 = 0). The structure of the solution



is now

U = Aykkt + Ayzzt
ki1 = Agcke + Agzze + &1
Zt+1 = q)Zt -+ 2€t+1 (15)

Example 3.1. Stochastic second-order equation
Eixir1 = axy 4+ bxy—1 + ¢z

We first show that the above equation is of form Eq. [3

Lo | o 1] [ae 0
E; = [ [ =t + 2t
| i1 | b al | @ c
Note that _ - _
A= , B= 1 , C= 0
0 1] _b a c
For illustration, we assign the values of a,b,c, a = 2.5, b = —1, and ¢ = 1. Remember that
W =A"B,
-1
2 1/2||1/2 0f |2 1/2
W=pPljpP= 2y /
1 1 0 211 1

Therefore, \y = 1/2, Aa = 2,E|

—1
o [2 1/2] _ [2/3 —1/3] - [JS o] _ [1/2 0]
11 —2/3  4/3 0 Ju 0 2

Defining
St kt Tt—1 2/3 —1/3 Tt
Ut Yt Tt —2/3 4/3 Tt
we have (here, ky = 41 and vy = x¢)
2 1
st = Ski— Sy
3 3y )
2 ke + 4
Ut = —ZkKt T ZYt.
gt 3Y
2The two eigenvalues of W satisfy det(W — A) = 0, giving A\1,2 = 5 + +/a?/4+b. By definition, the according
eigenvectors e; must satisfy the relationship We; = ;e; for each eigenvalue. Standardizing the eigenvectors to
e; = [1,xi]T allows one to obtain e1,2 = [1, /\1,2]T. Defining the matrix E = [e1, e2], we have WE = EJ, where
a0
J= |: 0 /\2:|



With

2/3 —1 1 1 [-1
—2/3 4/3 0 1 1_ 4/3
we get i
Js 0 (O 1/2 0 —1/3
E, St+1 _ St 5= / St 4 / 2.
Ut+1 0 Ju Ut CZ 0 2_ Ut 4/3
That is
E Y FIG SO DU
tSt+1 = sSt sAt = 25t 3Zt
4
Etut_,_l = Juut + CZZt = 2ut + gzt

Solving uy using the method of lag operator,

4
E_lut = Jyur + C;Zt =2u; + — 2

3
we obtain - -
L . .4
Ut = — Z Juj 1C;Et2t+j = — ZQ J lgEtZt—i-j
j=0 =0
B — 2, 4 4
ecause Uy = —5kt + 3Yt,
3 . 1k
= —U —_
Yt Tkt
Because
]Ct :Pil St _ 2 1/2 St
Yt Uy 1 1 Uy
we have

1
ki1 = 25141 + QUL

Note that Etkt+1 == Etﬂft =Ty = kt+1

1
kt+1 = Etkt—l—l = 2(J58t + C:Zt) + i(JUUt + C:;Zt)
1 1 1 4
<28t 3Zt> + 5 < Ut + 32t>
9 1 2k: 1 1 n 1 20, + 4
= | ket — = - =z — | 2us + ==
o \3™ 7 3%) 3% T \F T g
1 /2 1,3 1 1 1 4
=2 <2 <3k’t — g(zut + 2]€,§)> — 32t> + 5 <2ut + 3Zt)
1 3

= ikt + ZUt

As a result, we have x; = %Clﬁt_l — Z;io 2_j_1Etzt+j.

(16)

Typically, z = pzi—1 + o€, Therefore, Byzp1 = pze, Brzepr = pBrziyr = pPz, Erzigs =



_ 3 . _ 1
pPEi2t40 = p°2z, ... and so on. In this case, 1y = 5x1-1 — 5

4. Further reading

1. Chris Sims’ website on solving linear RE models and his note on the computational method.

2. Harold Uhlig’s website for “A toolkit for analyzing nonlinear economic dynamic models.”

Appendix A. Solution to Eq. |3 with the method of undetermined

coefficients

Uhlig (1999) (A toolkit for analyzing nonlinear dynamic stochastic models easily” in Compu-
tational Methods for the Study of Dynamic Economics, Oxford University Press) provides a toolkit
for solving linear and nonlinear systems using the method of undetermined coefficients.

Assume that zy = Gxy_1 + Hz and find G and H

Ei(Gry + Hzy1) = a(Grey + Hz) + bry—y + ez = GPay_y + GHz + pHz
Comparing the coefficients in the above equation yields

aG+b = G?
aH+c¢ = GH+pH (18)

With a = 2.5, b = —1, and ¢ = 1, we have G = 1/2 or G = 2. To have a stable and non-
exploding solution, we pick the solution with modulus less than 1, i.e. G = 1/2. The value of H is
then —fp.

Therefore, we once again get x; = %mt_l — 7=

2—p°

Appendix B. A third solution to Eq.

We rewrite the equation as

(L —a—bL)ay = czy

Let A1 and Ay be the two characteristic roots,
(L™= A (L7 = X)Ly = e

where A1 + Ay = a and A\; A2 = —b. In general, there are three cases

e )\; and )y are real and distinctive
e )1 and A9 are the same

e )\; and Ay are complex conjugate.


http://sims.princeton.edu/yftp/gensys/
http://sims.princeton.edu/yftp/Macro2009/LinearRELec.pdf
https://www.minneapolisfed.org/research/discussion-papers/a-toolkit-for-analyzing-nonlinear-dynamic-stochastic-models-easily

We are most interested in the case |A;| < 1 and |Az] > 1.

CZt

L= M) Lay=—
( R S WIS ey

We then obtain the solution:
¢ — ; ¢ —
— _ = —Jp=i, — _ = —J .
Tt = )\13715_1 )\2 Z AQ L Zt = /\1.%5_1 )\2 Z)\Q Etzt—f—]
7=0 7=0
Note that we need initial condition xy to complete the solution.
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