Linear rational expectation system

Tianxiao Zheng
SAIF

1. Introduction

Solving the infinite-horizon optimal control problem often gives rise to the following first-order nonlinear system

$$
\begin{array}{rlr}
0 & =u_{a}\left(x_{t}, z_{t}, a_{t}\right)+\beta \mathbb{E}_{t} \mu_{t+1} \phi_{a}\left(x_{t}, z_{t}, a_{t}, z_{t+1}\right), \quad t>0 \\
\mu_{t} & =u_{x}\left(x_{t}, z_{t}, a_{t}\right)+\beta \mathbb{E}_{t} \mu_{t+1} \phi_{x}\left(x_{t}, a_{t}, z_{t}, z_{t+1}\right), \quad t \geq 1 \\
x_{t+1} & =\phi\left(x_{t}, a_{t}, z_{t}, z_{t+1}\right), \quad x_{0} \text { given, } t \geq 0 \tag{1}\\
z_{t+1} & =\Phi z_{t}+\Sigma \epsilon_{t+1}, \quad z_{0} \text { given, } t \geq 0
\end{array}
$$

$\left\{z_{t}\right\}$ is a bounded $\mathbb{R}^{n_{z}}$-valued stochastic process, Φ is an $n_{z} \times n_{z}$ matrix, Σ is an $n_{z} \times n_{\epsilon}$ matrix, and $\left\{\epsilon_{t+1}\right\}$ is a stochastic process satisfying $\mathbb{E}_{t} \epsilon_{t+1}=0$ and $\mathbb{E} \epsilon_{t+1} \epsilon_{t+1}^{\prime}=I$.

Many macroeconomic problems can be described by the above system. As we possess a kaleidoscope of tools to deal with linear system, the first-order nonlinear system is usually linearized around its non-deterministic steady state. The resulting linear system is then solved and analyzed. 1

Example 1.1. Consider the following problem as an example

$$
\max _{\left\{C_{t}, K_{t+1}\right\}_{t=0}^{\infty}} E_{0} \sum_{t=0}^{\infty} \beta^{t} \log C_{t}
$$

subject to

$$
K_{t+1}=Z_{t} K_{t}^{\alpha}-C_{t}
$$

where $\beta, \alpha \in(0,1)$ and Z_{t} satisfies

$$
\log \left(Z_{t+1}\right)=\rho \log \left(Z_{t}\right)+\sigma \varepsilon_{t+1}
$$

[^0]Solving the problem yields the following set of system equation,

$$
\begin{aligned}
K_{t+1} & =Z_{t} K_{t}^{\alpha}-C_{t} \\
\frac{1}{C_{t}} & =\alpha \beta \mathbb{E}_{t}\left[\frac{1}{C_{t+1}} Z_{t+1} K_{t+1}^{\alpha-1}\right]
\end{aligned}
$$

Deterministic steady state satisfies the following equation (in the deterministic case, $Z_{t}=1$):

$$
\begin{aligned}
\bar{K} & =\bar{K}^{\alpha}-\bar{C} \\
1 & =\alpha \beta \bar{K}^{\alpha-1}
\end{aligned}
$$

Therefore, $\bar{K}=(\alpha \beta)^{1 /(1-\alpha)}$, and $\bar{C}=\bar{K}\left(\bar{K}^{\alpha-1}-1\right)=(\alpha \beta)^{1 /(1-\alpha)}(1 /(\alpha \beta)-1)$.
Defining $K_{t}=\bar{K} \exp \left(\hat{k}_{t}\right)$ and $C_{t}=\bar{C} \exp \left(\hat{c}_{t}\right)$, where \hat{k}_{t} and \hat{c}_{t} are the percentage deviations of capital and consumption around their deterministic steady state, and plugging them into system equations, we obtain

$$
\begin{aligned}
\bar{K} \exp \left(\hat{k}_{t+1}\right) & =\bar{Z} \exp \left(\hat{z}_{t}\right) \bar{K}^{\alpha} \exp \left(\hat{k}_{t} \alpha\right)-\bar{C} \exp \left(\hat{c}_{t}\right) \\
\frac{1}{\bar{C} \exp \left(\hat{c}_{t}\right)} & =\alpha \beta \mathbb{E}_{t}\left[\frac{1}{\bar{C} \exp \left(\hat{c}_{t+1}\right)} \bar{Z} \exp \left(\hat{z}_{t+1}\right) \bar{K}^{\alpha-1} \exp \left(\hat{k}_{t+1}(\alpha-1)\right)\right]
\end{aligned}
$$

Here, we define $Z_{t}=\bar{Z} \exp \left(\hat{z}_{t}\right)$, where \bar{Z} is the steady state mean of Z_{t}. Because $\log \left(Z_{t+1}\right)=$ $\rho \log \left(Z_{t}\right)+\sigma \varepsilon_{t+1}$. Therefore, $\bar{Z}=1$ and $\hat{z}_{t+1}=\rho \hat{z}_{t}+\sigma \varepsilon_{t+1}$. Using the first Taylor expansion, $\exp (x) \approx 1+x$ for x near 0 , we have

$$
\begin{aligned}
& \hat{k}_{t+1}=\frac{1}{\beta} \hat{k}_{t}+\left(1-\frac{1}{\alpha \beta}\right) \hat{c}_{t}+\frac{1}{\alpha \beta} \hat{z}_{t} \\
& \mathbb{E}_{t}\left[(1-\alpha) \hat{k}_{t+1}+\hat{c}_{t+1}\right]=\hat{c}_{t}+\rho \hat{z}_{t}
\end{aligned}
$$

Defining $x_{t}=\left[\hat{k}_{t}, \hat{c}_{t}\right]^{\prime}$, we get

$$
A \mathbb{E}_{t} x_{t+1}=B x_{t}+C z_{t}
$$

where

$$
A=\left[\begin{array}{cc}
1 & 0 \\
1-\alpha & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
\beta^{-1} & 1-(\alpha \beta)^{-1} \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{c}
(\alpha \beta)^{-1} \\
\rho
\end{array}\right]
$$

In this lecture, we introduce the method to solve linear rational expectations models:

$$
\begin{equation*}
A \mathbb{E}_{t} x_{t+1}=B x_{t}+C z_{t} \tag{2}
\end{equation*}
$$

Here, $x_{t} \in \mathbb{R}^{n}$ is a random vector, A and B are $n \times n$ matrices, and C is a $n \times n_{z}$ matrix.

2. Scalar Equation

In this section, we consider the scalar first-order equation ($n=n_{z}=1$ in Eq. 2)

$$
\begin{equation*}
\mathbb{E}_{t} x_{t+1}=b x_{t}+c z_{t} \tag{3}
\end{equation*}
$$

For example, the asset-pricing equation is of form Eq. 3 , $p_{t}=\frac{\mathbb{E}_{t} p_{t+1}+d_{t}}{R}$, where $R>1$ and d_{t} satisfies $d_{t}=\rho d_{t-1}+\sigma \epsilon_{t}$.

Iterating Eq. 3 backward, we obtain the backward looking solution:

$$
x_{t}=b^{t} x_{0}+c \sum_{j=0}^{t-1} b^{j} z_{t-j-1}
$$

Iterating Eq. 3 forward, we obtain the forward looking solution

$$
x_{t}=b^{-T} \mathbb{E}_{t} x_{t+T}-c \sum_{j=0}^{T-1} b^{-j-1} \mathbb{E}_{t} z_{t+j}
$$

In general, the solution to Eq. 3 is given by $x_{t}=x_{t}^{h}+x_{t}^{p}$, where x_{t}^{p} is a particular solution to (2) and x_{t}^{h} is the solution to the homogeneous equation $\mathbb{E}_{t} x_{t+1}^{h}=b x_{t}^{h}$. To find x_{t}^{p}, we introduce the widely adopted method: the lag operator method. The lag operator on any stochastic process $\left\{X_{t}\right\}$ is defined by

$$
\begin{equation*}
\mathcal{L}^{j} X_{t}=X_{t-j}, \quad \mathcal{L}^{-j} X_{t}=\mathbb{E}_{t} X_{t+j}, \quad j>0 \tag{4}
\end{equation*}
$$

Using the inverse of lag operator, Eq. 3 can be rewritten as

$$
\left(\mathcal{L}^{-1}-b\right) x_{t}=c z_{t} .
$$

There exist two forms of particular solutions x_{t}^{p} :

- forward looking solution

$$
x_{t}^{p}=-\frac{c}{b} \frac{1}{1-b^{-1} \mathcal{L}^{-1}} z_{t}=-c \sum_{j=0}^{\infty} b^{-j-1} \mathcal{L}^{-j} z_{t}=-c \sum_{j=0}^{\infty} b^{-j-1} \mathbb{E}_{t} z_{t+j}
$$

if $|b|>1$, then the infinite sum above is finite since z_{t} is a bounded sequence.

- backward looking solution

$$
x_{t}^{p}=\frac{c}{\mathcal{L}^{-1}} \frac{1}{1-b \mathcal{L}} z_{t}=c \sum_{j=0}^{\infty} b^{j} \mathcal{L}^{j+1} z_{t}=c \sum_{j=0}^{\infty} b^{j} z_{t-j-1}
$$

if $|b|<1$, then the infinite sum above is finite since z_{t} is a bounded sequence.
Now we proceed to find x_{t}^{h} satisfying $\mathbb{E}_{t} x_{t+1}^{h}=b x_{t}^{h}$. There also exist two forms of solution

- forward looking solution $x_{t}^{h}=b^{-T} \mathbb{E}_{t} x_{t+T}$

Transversality condition (or no-bubble condition): $\lim _{T \rightarrow \infty} b^{-T} \mathbb{E}_{t} x_{t+T}=0$

- backward looking solution $\mathbb{E}_{0} x_{t}^{h}=b^{t} x_{0}$

Initial condition x_{0} should be given here, or else the solution is indeterminate.
If no transversality or initial condition is given, x_{t}^{h} admits many solutions so long as x_{t}^{h} satisfies $\mathbb{E}_{t} x_{t+1}^{h}=b x_{t}^{h}$.

In this example, we have shown that two conditions are important for solving a linear difference equation:

- whether the initial value is given;
- whether the coefficient b is smaller than one in absolute value.

We will show below that similar conditions apply to general multivariate linear systems. In particular, the first condition determines whether the variable x_{t} is predetermined, and the second condition corresponds to whether the eigenvalue is stable.

3. Blanchard-Kahn method

We focus on the case of invertible A where the method of Blanchard and Kahn, 1980 can be applied. Klein, 2000 allows A to be singular, where generalized Schur form was employed) Eq. 2 can be rewritten as

$$
\mathbb{E}_{t} x_{t+1}=A^{-1} B x_{t}+A^{-1} C z_{t} .
$$

As usual, we proceed from here by diagonalizing $W=A^{-1} B$ first. However, in the general cases, it is only possible to represent W in the Jordan form such that $W=P^{-1} J P$, where J is a Jordan matrix:

$$
J=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ldots & \\
& & & J_{l}
\end{array}\right]
$$

The Jordan blocks $J_{i}(i=1 \ldots l)$ are matrices composed of 0 elements everywhere except for the diagonal, which is filled with a fixed element λ, and for the superdiagonal, which is composed of ones.

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & 1 & \\
& & \ldots & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

Here, λ are the eigenvalues of W.
Defining $x_{t}^{*}=P x_{t}$ and $C^{*}=P A^{-1} C$

$$
\mathbb{E}_{t} x_{t+1}^{*}=J x_{t}^{*}+C^{*} z_{t}
$$

In economics, we are most interested in the saddle path solution to the above equation, where the modulus of some λ_{i} is greater than 1 and the others less than 1 . As will be shown later, this has to do with the fact that initial value of some components of x_{t} are not exogenously given, or non-predetermined. We have ruled out the case when some of the eigenvalues are on the unit circle $\left(\left|\lambda_{i}\right|=1\right)$, because generally this leads to unstable behavior. As $\left|\lambda_{i}\right|>1$ leads to explosive behavior, we partition the system into two parts: $\left|\lambda_{i}\right|>1$ (n_{u} of them) and $\left|\lambda_{i}\right|<1\left(n_{s}=n-n_{u}\right.$ of them). Jordan matrix J is partitioned as

$$
J=\left[\begin{array}{ll}
J_{s} & \\
& J_{u}
\end{array}\right],
$$

where J_{s} contains all $\left|\lambda_{i}\right|<1$ and J_{u} all $\left|\lambda_{i}\right|>1$.
x_{t}^{*} and C^{*} are partitioned accordingly,

$$
x_{t}^{*}=\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right], \quad C^{*}=\left[\begin{array}{c}
C_{s}^{*} \\
C_{u}^{*}
\end{array}\right] .
$$

As a result, the system can be written as

$$
\left[\begin{array}{l}
\mathbb{E}_{t} s_{t+1} \tag{5}\\
\mathbb{E}_{t} u_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
J_{s} & 0 \\
0 & J_{u}
\end{array}\right]\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]+\left[\begin{array}{c}
C_{s}^{*} \\
C_{u}^{*}
\end{array}\right] z_{t}
$$

We first take care of u_{t}. Applying the lag operators, we have

$$
\mathcal{L}^{-1} u_{t}=J_{u} u_{t}+C_{u}^{*} z_{t} .
$$

The solution to u_{t} is straightforward

$$
\begin{equation*}
u_{t}=-\left(J_{u}-\mathcal{L}^{-1}\right)^{-1} C_{u}^{*} z_{t}=-J_{u}^{-1}\left(1-\mathcal{L}^{-1} J_{u}^{-1}\right)^{-1} C_{u}^{*} z_{t}=-\sum_{j=0}^{\infty} J_{u}^{-j-1} C_{u}^{*} \mathbb{E}_{t} z_{t+j} \tag{6}
\end{equation*}
$$

Here, J_{u} contains all the $\left|\lambda_{i}\right|>1$, so as long as z_{t} is a stable stochastic process the above sum series converges.

Transforming back to x_{t} (remember $x_{t}^{*}=P x_{t}$), we have

$$
\left[\begin{array}{l}
s_{t} \tag{7}\\
u_{t}
\end{array}\right]=P\left[\begin{array}{l}
k_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{ll}
P_{s k} & P_{s y} \\
P_{u k} & P_{u y}
\end{array}\right]\left[\begin{array}{l}
k_{t} \\
y_{t}
\end{array}\right] .
$$

We have partitioned x_{t} as $\left[k_{t}^{\prime}, y_{t}^{\prime}\right]^{\prime}$, where vector y_{t} contains n_{y} non-predetermined components and k_{t} contains $n_{k}=n-n_{y}$ predetermined components. Therefore,

$$
\begin{align*}
s_{t} & =P_{s y} y_{t}+P_{s k} k_{t} \tag{8}\\
u_{t} & =P_{u y} y_{t}+P_{u k} k_{t} . \tag{9}
\end{align*}
$$

In particular, we consider

$$
u_{0}=P_{u y} y_{0}+P_{u k} k_{0}
$$

, where k_{0} is predetermined, u_{0} can be derived from the above equation. $P_{u y}$ is an $n_{u} \times n_{y}$ matrix. If $n_{u}>n_{y}$, there can be no solution for y_{0}. If $n_{u}<n_{y}$, there can be infinitely many solutions for y_{0}. We therefore consider the case where the Blanchard-Kahn condition is satisfied:

- $n_{y}=n_{u}$, i.e. the number of unstable eigenvalues is equal to the number of non-predetermined variables. (forward-looking variables)
- $P_{u y}$ is invertible.

Under the condition, we have

$$
\begin{equation*}
y_{t}=P_{u y}^{-1} u_{t}-P_{u y}^{-1} P_{u k} k_{t} \tag{10}
\end{equation*}
$$

To solve for k_{t}, we use the following definition

$$
\left[\begin{array}{l}
k_{t} \tag{11}\\
y_{t}
\end{array}\right]=P^{-1}\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]=\left[\begin{array}{ll}
R_{k s} & R_{k u} \\
R_{y s} & R_{y u}
\end{array}\right]\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right],
$$

to get

$$
k_{t+1}=R_{k s} s_{t+1}+R_{k u} u_{t+1}
$$

Note that $\mathbb{E}_{t} s_{t+1}=J_{s} s_{t}+C_{s}^{*} z_{t}$. According to Blanchard and Kahn, 1980, $\mathbb{E}_{t} k_{t+1}=k_{t+1}$. Therefore, we have $s_{t+1}=J_{s} s_{t}+C_{s}^{*} z_{t}$ and

$$
\begin{align*}
k_{t+1} & =\mathbb{E}_{t} k_{t+1}=R_{k s}\left(J_{s} s_{t}+C_{s}^{*} z_{t}\right)+R_{k u}\left(J_{u} u_{t}+C_{u}^{*} z_{t}\right) \\
& =R_{k s}\left(J_{s}\left(P_{s k} k_{t}+P_{s y} y_{t}\right)+C_{s}^{*} z_{t}\right)+R_{k u}\left(J_{u} u_{t}+C_{u}^{*} z_{t}\right) \\
& =R_{k s}\left(J_{s}\left(P_{s k} k_{t}+P_{s y}\left(P_{u y}^{-1} u_{t}-P_{u y}^{-1} P_{u k} k_{t}\right)\right)+C_{s}^{*} z_{t}\right)+R_{k u}\left(J_{u} u_{t}+C_{u}^{*} z_{t}\right) \tag{12}
\end{align*}
$$

Because $R_{k s}\left(P_{s k}-P_{s y} P_{u y}^{-1} P_{u k}\right)=I$,

$$
\begin{equation*}
k_{t+1}=R_{k s} J_{s} R_{k s}^{-1} k_{t}+\left(R_{k u} C_{u}^{*}+R_{k s} C_{s}^{*}\right) z_{t}+\left(R_{k u} J_{u} P_{u y}+R_{k s} J_{s} P_{s y}\right) P_{u y}^{-1} u_{t} . \tag{13}
\end{equation*}
$$

Note that $R_{k s} J_{s} R_{k s}^{-1}$ has the same eigenvalues as J_{s}. So the evolution of k_{t} is stable. Eqs. 6, 10, and 13 form the solution to the problem of Eq. 22. If the z_{t} is given, the solution can be simplified,

$$
\begin{align*}
y_{t} & =A_{y k} k_{t}+A_{y z} z_{t} \\
k_{t+1} & =A_{k k} k_{t}+A_{k z} z_{t} \\
z_{t+1} & =\Phi z_{t}+\Sigma \epsilon_{t+1} \tag{14}
\end{align*}
$$

In Klein, 2000, predetermined variables are defined with an prediction error $\xi_{t+1}=k_{t+1}-\mathbb{E}_{t} k_{t+1}$. ξ_{t} is an exogenously given martingale difference process $\left(\mathbb{E}_{t} \xi_{t+1}=0\right)$. The structure of the solution
is now

$$
\begin{align*}
y_{t} & =A_{y k} k_{t}+A_{y z} z_{t} \\
k_{t+1} & =A_{k k} k_{t}+A_{k z} z_{t}+\xi_{t+1} \\
z_{t+1} & =\Phi z_{t}+\Sigma \epsilon_{t+1} \tag{15}
\end{align*}
$$

Example 3.1. Stochastic second-order equation

$$
\mathbb{E}_{t} x_{t+1}=a x_{t}+b x_{t-1}+c z_{t}
$$

We first show that the above equation is of form Eq. 2.

$$
\mathbb{E}_{t}\left[\begin{array}{c}
x_{t} \\
x_{t+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
b & a
\end{array}\right]\left[\begin{array}{c}
x_{t-1} \\
x_{t}
\end{array}\right]+\left[\begin{array}{l}
0 \\
c
\end{array}\right] z_{t}
$$

Note that

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
b & a
\end{array}\right], \quad C=\left[\begin{array}{l}
0 \\
c
\end{array}\right]
$$

For illustration, we assign the values of $a, b, c, a=2.5, b=-1$, and $c=1$. Remember that $W=A^{-1} B$,

$$
W=P^{-1} J P=\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]^{-1}
$$

Therefore, $\lambda_{1}=1 / 2, \lambda_{2}=2,{ }^{2}$

$$
P=\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
-2 / 3 & 4 / 3
\end{array}\right], \quad J=\left[\begin{array}{cc}
J_{s} & 0 \\
0 & J_{u}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 2
\end{array}\right]
$$

Defining

$$
x_{t}^{*}=\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]=P\left[\begin{array}{l}
k_{t} \\
y_{t}
\end{array}\right]=P\left[\begin{array}{c}
x_{t-1} \\
x_{t}
\end{array}\right]=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
-2 / 3 & 4 / 3
\end{array}\right]\left[\begin{array}{c}
x_{t-1} \\
x_{t}
\end{array}\right]
$$

we have (here, $k_{t} \equiv x_{t-1}$ and $y_{t} \equiv x_{t}$)

$$
\begin{aligned}
s_{t} & =\frac{2}{3} k_{t}-\frac{1}{3} y_{t} \\
u_{t} & =-\frac{2}{3} k_{t}+\frac{4}{3} y_{t}
\end{aligned}
$$

[^1]With

$$
C^{*}=P A^{-1} C=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
-2 / 3 & 4 / 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 3 \\
4 / 3
\end{array}\right]
$$

we get

$$
\mathbb{E}_{t}\left[\begin{array}{l}
s_{t+1} \\
u_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
J_{s} & 0 \\
0 & J_{u}
\end{array}\right]\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]+\left[\begin{array}{c}
C_{s}^{*} \\
C_{u}^{*}
\end{array}\right] z_{t}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]+\left[\begin{array}{c}
-1 / 3 \\
4 / 3
\end{array}\right] z_{t}
$$

That is

$$
\begin{aligned}
\mathbb{E}_{t} s_{t+1} & =J_{s} s_{t}+C_{s}^{*} z_{t}=\frac{1}{2} s_{t}-\frac{1}{3} z_{t} \\
\mathbb{E}_{t} u_{t+1} & =J_{u} u_{t}+C_{u}^{*} z_{t}=2 u_{t}+\frac{4}{3} z_{t}
\end{aligned}
$$

Solving u_{t} using the method of lag operator,

$$
\mathcal{L}^{-1} u_{t}=J_{u} u_{t}+C_{u}^{*} z_{t}=2 u_{t}+\frac{4}{3} z_{t}
$$

we obtain

$$
u_{t}=-\sum_{j=0}^{\infty} J_{u}^{-j-1} C_{u}^{*} \mathbb{E}_{t} z_{t+j}=-\sum_{j=0}^{\infty} 2^{-j-1} \frac{4}{3} \mathbb{E}_{t} z_{t+j}
$$

Because $u_{t}=-\frac{2}{3} k_{t}+\frac{4}{3} y_{t}$,

$$
y_{t}=\frac{3}{4} u_{t}+\frac{1}{2} k_{t}
$$

Because

$$
\left[\begin{array}{l}
k_{t} \tag{16}\\
y_{t}
\end{array}\right]=P^{-1}\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 / 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
s_{t} \\
u_{t}
\end{array}\right]
$$

we have

$$
k_{t+1}=2 s_{t+1}+\frac{1}{2} u_{t+1}
$$

Note that $\mathbb{E}_{t} k_{t+1}=\mathbb{E}_{t} x_{t}=x_{t}=k_{t+1}$

$$
\begin{align*}
k_{t+1} & =\mathbb{E}_{t} k_{t+1}=2\left(J_{s} s_{t}+C_{s}^{*} z_{t}\right)+\frac{1}{2}\left(J_{u} u_{t}+C_{u}^{*} z_{t}\right) \\
& =2\left(\frac{1}{2} s_{t}-\frac{1}{3} z_{t}\right)+\frac{1}{2}\left(2 u_{t}+\frac{4}{3} z_{t}\right) \\
& =2\left(\frac{1}{2}\left(\frac{2}{3} k_{t}-\frac{1}{3} y_{t}\right)-\frac{1}{3} z_{t}\right)+\frac{1}{2}\left(2 u_{t}+\frac{4}{3} z_{t}\right) \tag{17}\\
& =2\left(\frac{1}{2}\left(\frac{2}{3} k_{t}-\frac{1}{3}\left(\frac{3}{4} u_{t}+\frac{1}{2} k_{t}\right)\right)-\frac{1}{3} z_{t}\right)+\frac{1}{2}\left(2 u_{t}+\frac{4}{3} z_{t}\right) \\
& =\frac{1}{2} k_{t}+\frac{3}{4} u_{t}
\end{align*}
$$

As a result, we have $x_{t}=\frac{1}{2} x_{t-1}-\sum_{j=0}^{\infty} 2^{-j-1} \mathbb{E}_{t} z_{t+j}$.
Typically, $z_{t}=\rho z_{t-1}+\sigma \epsilon_{t}$. Therefore, $\mathbb{E}_{t} z_{t+1}=\rho z_{t}, \mathbb{E}_{t} z_{t+2}=\rho \mathbb{E}_{t} z_{t+1}=\rho^{2} z_{t}, \mathbb{E}_{t} z_{t+3}=$
$\rho \mathbb{E}_{t} z_{t+2}=\rho^{3} z_{t}, \ldots$ and so on. In this case, $x_{t}=\frac{1}{2} x_{t-1}-\frac{1}{2} z_{t} \sum_{j=0}^{\infty}\left(\frac{1}{2}\right)^{j} \rho^{j}=\frac{1}{2} x_{t-1}-\frac{z_{t}}{2-\rho}$.

4. Further reading

1. Chris Sims' website on solving linear RE models and his note on the computational method.
2. Harold Uhlig's website for "A toolkit for analyzing nonlinear economic dynamic models."

Appendix A. Solution to Eq. 3 with the method of undetermined coefficients

Uhlig (1999) ("A toolkit for analyzing nonlinear dynamic stochastic models easily" in Computational Methods for the Study of Dynamic Economics, Oxford University Press) provides a toolkit for solving linear and nonlinear systems using the method of undetermined coefficients.

Assume that $x_{t}=G x_{t-1}+H z_{t}$ and find G and H

$$
\mathbb{E}_{t}\left(G x_{t}+H z_{t+1}\right)=a\left(G x_{t-1}+H z_{t}\right)+b x_{t-1}+c z_{t}=G^{2} x_{t-1}+G H z_{t}+\rho H z_{t}
$$

Comparing the coefficients in the above equation yields

$$
\begin{align*}
a G+b & =G^{2} \\
a H+c & =G H+\rho H \tag{18}
\end{align*}
$$

With $a=2.5, b=-1$, and $c=1$, we have $G=1 / 2$ or $G=2$. To have a stable and nonexploding solution, we pick the solution with modulus less than 1, i.e. $G=1 / 2$. The value of H is then $-\frac{1}{2-\rho}$.

Therefore, we once again get $x_{t}=\frac{1}{2} x_{t-1}-\frac{z_{t}}{2-\rho}$.

Appendix B. A third solution to Eq. 3

We rewrite the equation as

$$
\left(\mathcal{L}^{-1}-a-b \mathcal{L}\right) x_{t}=c z_{t}
$$

Let λ_{1} and λ_{2} be the two characteristic roots,

$$
\left(\mathcal{L}^{-1}-\lambda_{1}\right)\left(\mathcal{L}^{-1}-\lambda_{2}\right) \mathcal{L} x_{t}=c z_{t}
$$

where $\lambda_{1}+\lambda_{2}=a$ and $\lambda_{1} \lambda_{2}=-b$. In general, there are three cases

- λ_{1} and λ_{2} are real and distinctive
- λ_{1} and λ_{2} are the same
- λ_{1} and λ_{2} are complex conjugate.

We are most interested in the case $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|>1$.

$$
\left(\mathcal{L}^{-1}-\lambda_{1}\right) \mathcal{L} x_{t}=-\frac{c z_{t}}{\lambda_{2}\left(1-\lambda_{2}^{-1} \mathcal{L}^{-1}\right)}
$$

We then obtain the solution:

$$
x_{t}=\lambda_{1} x_{t-1}-\frac{c}{\lambda_{2}} \sum_{j=0}^{\infty} \lambda_{2}^{-j} \mathcal{L}^{-j} z_{t}=\lambda_{1} x_{t-1}-\frac{c}{\lambda_{2}} \sum_{j=0}^{\infty} \lambda_{2}^{-j} \mathbb{E}_{t} z_{t+j}
$$

Note that we need initial condition x_{0} to complete the solution.

References

Blanchard, O. J., Kahn, C. M., 1980. The solution of linear difference models under rational expectations. Econometrica 48, 1305-1311.

Klein, P., 2000. Using the generalized schur form to solve a multivariate linear rational expectations model. Journal of Economic Dynamics and Control 24, 1405 - 1423.

[^0]: ${ }^{1}$ For higher order treatments, see for example (1)http://www. columbia.edu/~mu2166/2nd_order.htm (2) http: //www.nber.org/papers/w18983

[^1]: ${ }^{2}$ The two eigenvalues of W satisfy $\operatorname{det}(W-\lambda)=0$, giving $\lambda_{1,2}=\frac{a}{2} \pm \sqrt{a^{2} / 4+b}$. By definition, the according eigenvectors e_{i} must satisfy the relationship $W e_{i}={ }_{i} e_{i}$ for each eigenvalue. Standardizing the eigenvectors to $e_{i}=\left[1, x_{i}\right]^{T}$ allows one to obtain $e_{1,2}=\left[1, \lambda_{1,2}\right]^{T}$. Defining the matrix $E=\left[e_{1}, e_{2}\right]$, we have $W E=E J$, where

 $$
 J=\left[\begin{array}{cc}
 \lambda_{1} & 0 \\
 0 & \lambda_{2}
 \end{array}\right]
 $$

