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1. Introduction

Unlike the finite-horizon case, the infinite-horizon model has a stationarity structure in that

both the one-period rewards and the stochastic kernels for the state process are time homogeneous.

Intuitively, we may view the infinite-horizon model as the limit of the finite-horizon model as the

time horizon goes to infinity. The difficulty of the infinite-horizon case is that there is no general

theory to guarantee the existence of a solution to the Bellman equation. For bounded rewards, we

can use the powerful Contraction Mapping Theorem to deal with this issue.

2. Principle of Optimality

The principle of optimality in the infinite horizon states that

1. Dynamic programming principle

The value function is defined as

V (st) = max
{aj}∞j=t

Et
∞∑
j=0

βju(st+j , at+j).

It can be shown that the value function (independent of time) satisfies the Bellman equa-

tion (a functional equation)

V (s) = max
a∈Γ(s)

u(s, a) + βEV (s′),

where s′ is the state variable in the next period, and Γ(s) is the set of feasible action a.

2. Verification theorem

Given any s0, for any feasible policy πt, we can use the Bellman equation to derive

V ∗(st) ≥ u(st, πt) + βEtV ∗(st+1), for t = 0, 1, ..., n

where V ∗ is the solution to the Bellman equation. Multiplying by βt and rearranging yield

βtV ∗(st)− βt+1EtV ∗(st+1) ≥ βtu(st, πt).
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Taking expectation conditional on time 0 and summing over t = 0, 1, ..., n− 1, we obtain

V ∗(s0)− βnE0V
∗(sn) ≥ E0

n−1∑
t=0

βtu(st, πt)

If the transversality condition (recall in the finite horizon, V ∗T (sT ) = uT (sT ))

lim
n→∞

E0β
nV ∗(sn) = 0

is satisfied, by taking the limit n→∞ we deduce that

V ∗(s0) ≥ E0

∞∑
t=0

βtu(st, πt).

The equality holds if we replace π by π∗ (optimal policy generated from the Bellman equation).

In this case, the right-hand-side of the above inequality becomes V (s0), giving V ∗(s0) = V (s0).

The result demonstrates that under the transversality condition the solution to the Bellman

equation gives the value function for the Markov decision problem. In addition, any plan

generated by the optimal policy correspondence from the dynamic programming problem is

optimal for the Markov decision problem.

We should emphasize that the transversality condition is a sufficient condition, but not a

necessary one. It is quite strong because it requires the limit to converge to zero for any

feasible policy. This condition is often violated in many applications with unbounded rewards.

However, if any feasible plan that violates the transversality condition is dominated by some

feasible plan that satisfies this condition, the solution to the Bellman equation is the value

function and that the associated policy function generates an optimal plan. (See Stokey,

Lucas, and Prescott, 1989).

3. Any optimal policy obtained from solving the Markov decision problem can be generated by

solving the Bellman equation.

3. Solving optimal stopping problem

Here, we give a specific example to show how to solve the optimal stopping problem with the

method of dynamic programming.

Example 3.1. Option exercise

An agent decides when to exercise an American call option on a stock. Let zt represents the

stock price and I represents the strike price. If the agent chooses to wait, he receives nothing in the

current period. Then he draws a new stock price in the next period and decides whether he should

exercise the option. In this problem, we formulate the option exercise as a infinite-horizon optimal

stopping. Continuation at date t generates a payoff of ft(zt) = 0, while stopping (option exercise)

at date t yields an immediate payoff gt(zt) = zt − I and zero payoff in the future. The decision
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maker is risk neutral so that he maximizes his expected return. The discount factor is equal to the

inverse of the gross interest rate, β = 1/R.

• Find the Bellman equation of and solve the dynamic programming problem. For simplicity,

we assume that zt is i.i.d. The cumulative distribution function is F (z), z ∈ [0, B], B > I.

• Find the mean waiting period until the option is exercised.

The Bellman equation of the problem

V (z) = max
a∈{0,1}

u(z, a) + βEV (z′)

= max(z − I, βEV (z′))

(1)

Note that βEV (z′) is a constant under iid z t. Therefore, if z − I > βEV (z′), the decision maker

chooses to exercise the option and to wait otherwise. As a result,

V (z) =

{
z − I, if z > z∗,

const., if z < z∗.

The threshold z∗ is determined by V (z∗) = z∗ − I = βEV (z′),

z∗ − I = β

∫ z∗

0
(z∗ − I)dF (z) + β

∫ B

z∗
(z − I)dF (z) = β

∫ B

0
(z∗ − I)dF (z) + β

∫ B

z∗
(z − z∗)dF (z)

This gives

z∗ − I =
β

1− β

∫ B

z∗
(z − z∗)dF (z)

From the equation, we see that z∗ ∈ [I,B]. The decision maker will not exercise the option for

zt ∈ (I, z∗) because there is option value of waiting.

The probability of not exercising the option at each period is λ = F (z∗). Consequently, the

probability of exercising the option at time period t is λj(1− λ). The mean waiting period is then

∞∑
j=0

jλj(1− λ) = (1− λ)λ
d

dλ

∞∑
j=0

λj =
λ

1− λ

4. Bellman equation as a fixed-point problem

Define a Bellman operator T̂ so that

T̂ f = max
a∈Γ(s)

u(s, a) + βEf(s′),

where f is a continuous function on S. Then the solution to the Bellman equation is a fixed point

of T̂ in that T̂ V = V .
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The set of bounded and continuous function on the state space S endowed with the sup norm

is a Banach space (C(S)). The operator T is a contraction if (1) u is bounded and continuous; (2)

Γ is nonempty, compact, and continuous; (3) The stochastic kernel P (s, a; s′) satisfies the property

that
∫
f(s′)P (s, a; s′)ds′ is continuous in (s, a) for any bounded and continuous function f ; (4)

β ∈ (0, 1).

The contraction property of the Bellman operator T̂ gives the existence and uniqueness of the

solution to the Bellman equation. It justifies the guess-and-verify method for finding the value

function. (As long as we find a solution, it is the solution.) Below is an simple example.

Example 4.1. A social planner’s problem

max
{cj}∞j=0

E0

∞∑
t=0

βt log(ct)

subject to ct+Kt+1 = ztK
α
t , where zt follows a Markov process with transition equation log(zt+1) =

ρ log(zt) + σεt+1. Here, ρ ∈ (0, 1) and εt is normal distribution with mean 0 and variance 1.

We write the Bellman equation as

V (K, z) = max
c

log c+ βEV (zKα − c, z′)

Given the log utility, we could guess the value function takes the functional form V (K, z) =

d0 + d1 log z + d2 logK. The maximization problem

max
c

log c+ βEV (zKα − c, z′) = max
c

log c+ βd0 + βd2 log(zKα − c) + βd1E log z′

yields c = zKα/(1 + βd2). Therefore,

d0 + d1 log z + d2 logK = log
zKα

1 + βd2
+ βd2 log

zKαβd2

1 + βd2
+ βd1ρ log z + βd0

Comparing the coefficients on both side yields

d2 = α+ αβd2,

d1 = 1 + βd2 + βρd1,

d0 = − log(1 + βd2) + βd2 log
βd2

1 + βd2
+ βd0.

(2)

Solving these equations, we have

d2 =
α

1− αβ
,

d1 =
1

(1− αβ)(1− ρβ)
,

d0 =
1

1− β
[log(1− αβ) +

αβ

1− αβ
log(αβ)]

(3)
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The decision rule can also be derived: Kt+1 = αβztK
α
t .

4.1. Value function iteration

The contraction property of the Bellman operator T̂ also gives a globally convergent algorithm

to solve for the value function. Specifically, for any v0 ∈ C(S), because T̂ is a contraction operator

lim
N→∞

T̂Nv0 = V.

This property gives rise to a numerical algorithm known as value function iteration for finding V .

We start with an arbitrary guess V0(s) and iterate the Bellman operator

V1 = T̂ V0, V2 = T̂ V1, ... Vn(s) = T̂ Vn−1 = max
a∈Γ(s)

u(s, a) + βEVn−1(s′), ...

until Vn is convergent. The contraction mapping theorem guarantees the convergence of this algo-

rithm. In particular, the contraction property implies that ‖Vn(s) − V (s)‖ converges to zero at a

geometric rate.

Note that in the case where we have set v0(s) = 0, the value function iteration algorithm is

equivalent to solving a finite horizon problem by backward induction. Suppose we stop the iteration

atN because convergence is attained, e.g. ‖VN (s)−VN−1(s)‖ ≈ 10−15. The equivalent finite horizon

problem is then define with ut(st, at) = u(st, at) , for t = 0, 1, ..., N − 1 and uN (sN , aN ) = 0.

4.2. Policy function iteration (Howard’s improvement algorithm)

We digress here to introduce a usually much faster algorithm to solve the Bellman equation. It

is known as policy function iteration and consists of the following three steps:

1. Choose a arbitrary policy g0, and compute the value function associated implied by g0.

V0(s) = u(s, g0(s)) + βEV0(s′).

On discretized grids of the state space, this is usually done by solving a linear system. There

also exists a fast method to compute V0(s) by defining an operator B̂,

B̂V0(s) = u(s, g0(s)) + βEV0(s′),

and finding the fix point V0 = B̂V0. Iterate on B for a small number of times to obtain an

approximation of V0.

2. Generate a improved policy g1(s) that solves the two-period problem

max
a∈Γ(s)

u(s, a) + βEV0(s′)
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3. Given g1, one continues the cycle of value function evaluation step and the policy improvement

step until the first iteration n such that ‖gn− gn−1‖ → 0 (or alternatively ‖Vn− Vn−1‖ → 0).

Since such a gn satisfies the Bellman equation, it is optimal.

5. Application to optimal control

The associated dynamic programming problem of infinite-horizon optimal control is give by

V (x, z) = max
a∈Γ(x,z)

u(x, z, a) + β

∫
V (φ(x, a, z, z′), z′)Q(z, z′)dz′

5.1. Characterization of the value function: monotonicity, concavity and differentiability

Analogous to the finite-horizon optimal control, we have the following properties of the solution

to the Bellman equation (i.e. V and policy G):

• under the condition (1) u(., z, a) is continuous and bounded for each z, a, (2) u(., z, a) is

strictly increasing, (3) for each z, Γ(., z) is increasing (x < x′ implies Γ(x, z) ⊂ Γ(y, z)), (4)

φ(., a, z, z′) is increasing for each a, z, z′, then V (., z) is strictly increasing for each z.

• under the condition (1), (2), (3), (4), (5) at each z, for all x, a, x′, a′ and θ ∈ (0, 1), u(θx +

(1− θ)x′, z, θa+ (1− θ)a′) ≥ θu(x, z, a) + (1− θ)u(x′, z, a′), (6) φ(., ., z, z′) is concave for each

z, z′, then V (., z) is strictly concave for each z; G is a single-valued continuous function.

• under (5), (7) for each z, u(., z, .) is continuously differentiable on the interior of X × A, (8)

for each z, z′, φ(., ., z, z′) is differentiable on the interior of X× A, (9) at each z, for all x, x′,

a ∈ Γ(x, z) and a′ ∈ Γ(x′, z) imply that θa+ (1− θ)a′ ∈ Γ(θx+ (1− θ)x′, z), then V (., z)$ is

continuously differentiable.

The envelope condition is then given by

Vx(x, z) = ux(x, z, a) + β

∫
Vx(φ(x, a, z, z′), z′)φx(x, a, z, z′)Q(z, z′)dz′

The first order condition is given by

0 = ua(x, z, a) + β

∫
Vx(φ(x, a, z, z′), z′)φa(x, a, z, z

′)Q(z, z′)dz′

5.2. Maximum Principle

In this note, we do not discuss problems with unbounded rewards. The difficulty is that there is

no general fixed-point theorem to guarantee the existence of a solution. For readers interested in

this problem, we pointed out two relevant work. Alvarez and Stokey, 1998 consider general dynamic

programming problems with a homogeneity property. They show that the Weighted Contraction

Mapping Theorem can be applied for general cases with positive degree of homogeneity. Durán,

2000 extends the weighted norm approach to general problems without the homogeneity property.
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Analyzing the existence and properties of the value function is nontrivial for unbounded reward

functions. By contrast, unbounded reward functions do not pose any difficulty for the Maximum

Principle to work. To present the infinite horizon maximum principle, we write the Lagrangian

form for the optimal control problem

L = E

[ ∞∑
t=0

βtu(xt, zt, at)− βt+1µt+1(xt+1 − φ(xt, zt, at, zt+1))

]

F.O.C

at : 0 = ua(xt, zt, at) + βEtµt+1φa(xt, zt, at, zt+1), t > 0

xt : µt = ux(xt, zt, at) + βEtµt+1φx(xt, at, zt, zt+1), t ≥ 1
(4)

Setting µt = Vx(xt, zt), we can see that the two conditions above are equivalent to the first order

condition and envelope condition of Bellman equation. The Lagrange multiplier µt is interpreted

as the shadow value of the value function.

Recall that in the finite horizon case, we have a terminal condition µT = ∂uT
∂xT

to solve the

problem by backward induction. There is no well-defined terminal condition in the infinite horizon

case. Here, a sufficient boundary condition is in the form of transversality condition

lim
T→∞

E[βTµTxT ] = 0

For a special class of control problems -- the Euler class, we could prove the transversality condition

is also necessary. (cf. Ekeland and Scheinkman, 1986 and Kamihigashi, 2000)

5.2.1. Euler class

In practice, it may be possible to use simple tricks to transform the general optimal control

problem to a special class of control problems -- the Euler class. Suppose it is possible to perform

a change of variables such that the state transition equation becomes

xt+1 = at.

This could simplify the solution by Bellman equation and maximum principle.

1. Bellman equation

The envelope condition becomes very simple

Vx(x, z) = ux(x, z, g(x, z))

where x′ = a = g(x, z) is the optimal policy. Substituting the envelope condition into the
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first order condition yields the Euler equation

0 = ua(x, z, a) + β

∫
ux(x′, z′, a′)Q(z, z′)dz′

= ua(x, z, g(x, z)) + β

∫
ux

(
g(x, z), z′, g

(
g(x, z)

))
Q(z, z′)dz′

This is a functional equation for the optimal policy g. Instead of solving the original Bellman

equation, for the Euler class, we could solve the Euler equation.

2. Maximum principle

The first order conditions become

at : 0 = ua(xt, zt, at) + βEt[µt+1], t > 0

xt : µt = ux(xt, zt, at), t ≥ 1
(5)

Substituting the second equation into the first one, we get the sequential form of Euler

equation

0 = ua(xt, zt, xt+1) + βEt[ux(xt+1, zt+1, xt+2)].

The transversality condition can be expressed as

lim
T→∞

E[βTµTxT ] = lim
T→∞

E[βTux(xT , zT , xT+1)xT ] = 0.

By using the Euler equation, we have

lim
T→∞

E[βTux(xT , zT , xT+1)xT ] = lim
T→∞

E[βT−1aT−1βET−1ux(xT , zT , xT+1)]

= − lim
T→∞

E[βT−1ua(xT−1, zT−1, xT )aT−1].
(6)

Therefore, the condition can be rewritten as

lim
T→∞

E[βTua(xT , zT , xT+1)aT ] = lim
T→∞

E[βTua(xT , zT , xT+1)xT+1] = 0.

To get some economic sense of the transversality condition, we consider a simple example.

Example 5.1. A social planner’s resource allocation problem.

The planner’s objective is to choose sequences of consumption (ct) so as to

max
{ct}Tt=0

E

[
T∑
t=0

βtu(ct)

]
, β ∈ (0, 1)

subject to the resource constraint

Kt+1 = ztF (Kt)− ct, (x0, z0) given.
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By defining Kt+1 ≡ at, the problem can be rewritten as

max
{ct}Tt=0

E

[
T∑
t=0

βtu(ztF (Kt)− at)

]
, β ∈ (0, 1)

subject to Kt+1 = at. (Kt is the state variable; at is the control variable.)

In the last period, the agent solves the problem

max
KT+1

E[βTu(zTF (KT )−KT+1)]

KT+1 should be non-negative.

• If KT+1 = 0, the following condition should be satisfied E[βTu′(cT )] > 0;

• If KT+1 > 0, the following condition should be satisfied E[βTu′(cT )] = 0

We can combine the conditions as E[βTu′(cT )KT+1] = 0. This is the transversality condition

in the finite horizon case. The economic meaning is that the expected discounted shadow value

of the terminal state (e.g., capital or wealth) must be zero. In the infinite horizon case, we

take the limit of the condition.

Finally, let us consider an example to illustrate the above theoretical results.

Example 5.2. A consumption-saving problem

max
{ct}∞t=0

E

[
T∑
t=0

c1−γ
t

1− γ

]
, γ > 0, γ 6= 1

subject to xt+1 = Rt+1(xt − ct), xt+1 > 0, x0 > 0 given, where Rt+1 > 0 is i.i.d. drawn from a

distribution. By defining yt+1 = xt+1/Rt+1, yt+1 = at = xt − ct = ytRt − ct, ct = ytRt − at.
F.O.C

at : 0 = ua(xt, zt, at) + βEtµt+1 = −(ytRt − at)−γ + βEtµt+1 = −c−γt + βEtµt+1

xt : µt = ux(xt, zt, at) = Rt(ytRt − at)−γ = Rtc
−γ
t ,

(7)

The resulting Euler equation is

c−γt = βEt[Rt+1c
−γ
t+1]

An obvious guess of the consumption policy is that ct = Cxt (0 < C < 1). Plugging the conjecture

into the Euler equation yields

(Cxt)−γ = βEt[Rt+1(Cxt+1)−γ ] = βEt[Rt+1C−γ(Rt+1xt −Rt+1Cxt)−γ ]
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The above equation gives us C = 1− (βEt[R1−γ
t+1 ])1/γ. Consider the Bellman equation

V (x) = max
c

u(c) + βEV (x′),

= u(Cx) + βEV (R′x(1− C)) =
(Cx)1−γ

1− γ
+ βEV (R′x(1− C))

(8)

An obvious guess of the value function is V (x) = Bx1−γ/(1− γ). Plugging the conjecture into the

Euler equation yields

B =
[
1− (βEt[R1−γ

t+1 ])1/γ
]−γ

Now, we could check the transversality condition

lim
t→∞

E0β
tV (xt) = 0

E0β
tV (xt) =

βtB
1− γ

E0[x1−γ
t ] =

βtB
1− γ

E0[R1−γ
t (xt−1 − ct−1)1−γ ]

=
βtB

1− γ
(1− C)1−γE0[R1−γ

t x1−γ
t−1 ]

=
βtB

1− γ
(1− C)t(1−γ)x1−γ

0 E0[

t∏
j=1

R1−γ
j ]

(9)

and the transversality condition

lim
T→∞

E0[βTux(xT , zT , xT+1)xT ] = lim
T→∞

E0[βTRT c
−γ
T xT /RT ] = lim

T→∞
E0[βT c−γT xT ]

E0[βT c−γT xT ] = βTBE0[x1−γ
T ]
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