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1. Introduction

Markov decision processes can be solved by linear programming or dynamic programming. In

this note, we present the latter approach. The method of dynamic programming is best understood

by studying finite-horizon problems. Therefore, we start with the case of finite horizon and intro-

duce the infinite horizon dynamic programming next. The idea of this method is to use backward

induction.

2. Principle of optimality

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision. (Bellman)

The principle of optimality states that

1. Dynamic programming principle

Because the agent does not make decision in the last period, we define value function at time

T ,

VT (sT ) = uT (sT ).

For t = 0, 1, ..., T − 2, T − 1, the value function can be defined as

Vt(st) = max
{aj}T−1

j=t

Et
T−t∑
j=0

βjut+j(st+j , at+j).

It can be shown that the value function has the following recursive structure

Vt(st) = max
at

ut(st, at) + βEtVt+1(st+1).

The above equation is called Bellman equation or dynamic programming equation. For t = 0,

we reach the original Markov decision problem

V0(s0) = max
{aj}T−1

j=0

E0

T∑
t=0

βtut(st, at).
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2. Verification theorem

The solution to the Bellman equation is the value function and that associated policy is the

optimal policies.

3. Any optimal policy obtained from solving the Markov decision problem can be generated by

solving the Bellman equation.

With the principle of optimality, we are guaranteed that the optimal policy (plan) obtained from

the Markov decision problem is identical to those generated from the optimal policy functions

obtained from dynamic programming.

3. Solving optimal stopping problem

Here, we give a specific example to show how to solve the optimal stopping problem with the

method of dynamic programming.

Example 3.1. The secretary problem

State space: Z = {0, 1}. 1 denotes that the current one is the best seen so far, and 0 denotes

that a previous one was better. Let Vt(1) (Vt(0)) be the maximum probability of choosing the best

candidate, when the current candidate is (is not) the best among the first t candidates.

At time t = T = N , it is obvious that VN (0) = h(0) = 0, VN (1) = h(1) = 1.

For t = 0, 1, ..., T − 2, T − 1, the Bellman equation can be written as

Vt(zt) = max(ft(zt), gt(zt)) + max EtVt+1(st+1)

= max(ft(zt), gt(zt)) + max (
1

t+ 1
Vt+1(1) +

t

t+ 1
Vt+1(0), 0)

= max

(
ft(zt) +

1

t+ 1
Vt+1(1) +

t

t+ 1
Vt+1(0), gt(zt)

)
.

(1)

As a result,

Vt(0) =
1

t+ 1
Vt+1(1) +

t

t+ 1
Vt+1(0) (always choose to continue), (2)

Vt(1) = max

(
1

t+ 1
Vt+1(1) +

t

t+ 1
Vt+1(0), t/N

)
= max(Vt(0), t/N). (3)

We can see from Eq. 3 that Vt(1) ≥ Vt(0), and from Eq. 2 that Vt(0) ≥ Vt+1(0). Therefore, Vt(0) is

decreasing with t. From Eq. 3, we see that there is a critical ts so that Vts(0) = ts/N . This means

that the optimal policy is to interview the first ts candidates and to stop at the first one that is the

best so far.

For t > ts, we have Vt(1) = t/N , and Vt(0) = 1
N + t

t+1Vt+1(0). With VN (0) = 0, we solve the

Vt(0) equation backward and get

Vt(0) =
t

N
(
1

t
+

1

t+ 1
+ ...+

1

N − 1
), t ≥ ts
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This can be used to find ts,

ts
N

=
ts
N

(
1

ts
+

1

ts + 1
+ ...+

1

N − 1
).

For sufficient large N , we could approximate the above equation as,

1 ≈ log
N

ts
.

This is due to the following inequality∫ N

ts

1

τ
dτ <

1

ts
+

1

ts + 1
+ · · ·+ 1

N − 1
<

∫ N−1

ts−1

1

τ
dτ (4)

Therefore ts/N ≈ 1/e.

4. Application to optimal control

Modern macroeconomic models often present themselves as a optimal control problem. In

these problems, the state s is decomposed into a vector of endogenous state x and a vector of

exogenous state z. The exogenous state evolves according to a time-homogeneous Markov process

with transition function Q. The endogenous state evolves according to the following equation

xt+1 = φt(xt, at, zt, zt+1) t = 0, 1, ..., T − 1, (x0, z0) given.

This equation is called state transition equation. The action at is a vector of control variables.

After choosing at ∈ Γ(xt, zt), the decision maker obtains reward ut(xt, zt, at).

We consider the control problem

max
{at}T−1

t=0

E

[
T−1∑
t=0

βtut(xt, zt, at) + βTuT (xT , zT )

]
.

The associated Bellman equation is given by

Vt(xt, zt) = max
at∈Γ(xt,zt)

ut(xt, zt, at) + EtβVt+1(xt+1, zt+1),

and VT (xT , zT ) = uT (xT , zT ).

4.1. Characterization of the value function: monotonicity, concavity and differentiability

The properties of the solution to the above Bellman equation (i.e. Vt and policyGt: Xnx×Rnz →
Rna) are discussed Stokey, Lucas, and Prescott, 1989. It can be shown that

• under the condition (1) ut(., z, a) (t = 0, 1, ...T − 1) is strictly increasing for each z, a and
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uT (., z) is strictly increasing for each z, (2) for each z, Γ(., z) is increasing (x < x′ implies

Γ(x, z) ⊂ Γ(y, z)), (3) φt(., a, z, z
′) is increasing for each a, z, z′, then Vt(., z) is strictly in-

creasing for each z.

• under the condition (4) uT (., z) is strictly concave for each z and at each z, for all x, a, x′, a′ and

θ ∈ (0, 1), t = 0, 1, ..., T−1, ut(θx+(1−θ)x′, z, θa+(1−θ)a′) ≥ θut(x, z, a)+(1−θ)ut(x′, z, a′),
(5) at each z, for all x, x′, a ∈ Γ(x, z) and a′ ∈ Γ(x′, z) imply that θa + (1 − θ)a′ ∈ Γ(θx +

(1− θ)x′, z), (6) φ(., ., z, z′) is concave for each z, z′, then Vt(., z) is strictly concave for each

z; Gt is a single-valued continuous function.

• under (4)-(6), (7) for each z, uT (., z) is differentiable on the interior of X and ut(., z, .) (t =

0, 1, ...T−1) is continuously differentiable on the interior of X×A, (8) for each z, z′, φ(., ., z, z′)

is differentiable on the interior of X× A, then Vt(., zt) is continuously differentiable.

Differentiating the Bellman equation with respect to xt gives the envelope condition,

∂Vt(xt, zt)

∂xt
=
∂ut
∂xt

+ Etβ
∂Vt+1

∂xt+1

∂φt
∂xt

, for t = 1, 2, ..., T − 1,

and ∂VT (xT ,zT )
∂xT

= ∂uT (xT ,zT )
∂xT

. The solution of the Bellman equation can be computed by iterating

backward from T to 0 and choosing at at t = T − 1, T − 2, ..., 1, 0. To find at, we need the first

order condition of the Bellman equation

0 =
∂ut
∂at

+ βEt
∂Vt+1

∂xt+1

∂φt
∂at

, for t = 0, 1, ...T − 1.

Below we give an example to illustrate the use of dynamic programming method to solve the optimal

control problem.

Example 4.1. A consumption-saving problem

Consider a classical consumption-saving problem with uncertain labor income. A consumer is

initially endowed with some savings. Each period he receives uncertain labor income. He then

decides how much to consume and how much to save in order to maximize his discounted expected

utility over a finite horizon.

We formulate this problem by the following Markov decision model:

max E

[
T∑
t=0

βtu(ct)

]
,

subject to

ct + at+1 = Rat + yt, a0 ≥ 0 given

where R > 0 is the gross interest rate and ct, at, and yt represent consumption, savings, and labor

income, respectively. Assume each yt is independently and identically drawn from a distribution

over [ymin, ymax].

We need to impose a constraint on aT+1; otherwise, the consumer could borrow and consume an
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infinite amount. Thus, we may impose a borrowing constraint of the form aT+1 ≥ −bT where bT ≥ 0

represents a borrowing limit. In general, there may be borrowing constraints in each period because

of financial market frictions: at+1 ≥ −bt , for some bt ≥ 0, t = 0, 1, ..., T , where the borrowing limit

bt may be time and state dependent. Here we simply do not allow borrowing: bt = 0.

For convenience, we redefine the state variable as cash hold at each date xt ≡ Rat + yt. The

state transition equation becomes xt+1 = R(xt − ct) + yt+1. Defining At ≡ xt − ct = at+1 as the

control variable, we transform the original problem to

max E

[
T∑
t=0

βtu(xt −At)

]
,

subject to xt+1 = RAt + yt+1.

Now we solve the problem by the method of dynamic programming. As in Schechtman and

Escudero, 1977, we assume u(ct) = − exp(−γct), (γ > 0).

For t = T , AT = 0, the value function VT (xT ) = u(xT ). The Bellman equation is

Vt(xt) = max
0≤At≤xt

u(xt −At) + βEtVt+1(RAt + yt+1),

where the expectation is taken with respect to y. The envelope condition can be written as (xt does

not appear in the state transition equation, resulting in a very simple envelope condition. This is

the reason why we define xt and At in the first place.)

V ′t (xt) =
∂u(xt −At)

∂xt
.

The first order condition of Bellman equation is

0 =
∂u(xt −At)

∂At
+ βREtV ′t+1(RAt + yt+1)

Substituting the envelope condition into the first order condition, we get

e−γ(xt−At) = βREte−γ(RAt+yt+1−At+1), {t = 0, ..., T − 1}, and AT = 0

This equation is usually called Euler equation.

We start solving the Euler equation from t = T − 1 (AT = 0) and get

AT−1 =
xT−1

1 +R
+

log(βR)

γ(1 +R)
+

log(ET−1e
−γyT )

γ(1 +R)
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For t = T − 2,

eγ(1+R)AT−2 = βReγxT−2ET−2 exp

[
γ

(
RAT−2 −RyT−1

1 +R
+

log(βR)

γ(1 +R)
+

log(ET−1e
−γyT )

γ(1 +R)

)]
1 +R+R2

1 +R
AT−2 = xT−2 +

log(βR)

γ(1 +R)
+

log(βR)

γ
+

log(ET−1e
−γyT )

γ(1 +R)
+

logET−2e
−γyT−1R/(1+R)

γ

Observing the structure of AT−1 and AT−2, we conjecture that

At = (1−Dt)xt + Ct
log(R)

γ
+Bt, with DT = 1, CT = 0, BT = 0

Substituting the preceding conjecture into the Euler equation yields

−γxt + γAt = log(βR)− γRAt + γ(1−Dt+1)RAt + Ct+1 log(βR) + γBt+1 + logEte−γDt+1yt+1

i.e.

(1 +Dt+1R)

(
(1−Dt)xt + Ct

log(R)

γ
+Bt

)
= xt+ (Ct+1 + 1)

log(βR)

γ
+Bt+1 +

1

γ
logEte−γDt+1yt+1

Matching coefficients yields

Dt+1R(1−Dt) = Dt

Ct(1 +Dt+1R) = Ct+1 + 1

Bt(1 +Dt+1R) = Bt+1 +
1

γ
logEte−γDt+1yt+1

(5)

Then we get

Dt =
RDt+1

1 +RDt+1

Ct = (1−Dt)(1 + Ct+1)

Bt = (1−Dt)Bt+1 + (1−Dt)
1

γ
logEte−γDt+1yt+1

(6)

Iterating the relations (with DT = 1, CT = 0, BT = 0) gives Dt, Ct, Bt, e.g.

DT−1 =
R

1 +R
, CT−1 =

1

1 +R
, BT−1 =

1

1 +R

1

γ
logET−1e

−γyT ,

DT−2 =
R2/(1 +R)

1 +R2/(1 +R)
=

R2

1 +R+R2
, CT−2 =

1 +R

1 +R+R2

(
1 +

1

1 +R

)
BT−2 =

1 +R

1 +R+R2

log(ET−1e
−γyT )

γ(1 +R)
+

1 +R

1 +R+R2

1

γ
logET−2e

−γ R
1+R

yT−1 , and so on ...

(7)

and the optimal saving policy At = (1−Dt)xt +Ct
log(βR)

γ +Bt. The optimal consumption policy is
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given by ct = xt −At.

4.2. Maximum principle

The optimal control problem can also be solved by the maximum principle.

Maximum Principle is originally proposed for continuous-time optimal control problems by

Pontryagin et al. (1962). This principle is closely related to the Lagrange multiplier method and

also applies to discrete time optimal control problems. It is pretty interesting to study the maximum

principle and its relation to dynamic programming.

We start by write the Lagrangian form for the control problem

L = E

[
T−1∑
t=0

βtut(xt, zt, at)− βt+1µt+1(xt+1 − φt(xt, zt, at, zt+1)) + βTuT (xT , zT )

]

We can derive the first-order conditions for the solution. Specifically, differentiating with respect

to at yields
∂ut
∂at

+ βEtµt+1
∂φt
∂at

= 0

for t = 0, 1, ..., T − 2, T − 1. If µt is interpreted as the shadow value of the value function µt =
∂Vt(xt,zt)

∂xt
, we immediately recognize that the above equation is the first order condition of the

Bellman equation.

Differentiating with respect to xt yields,

µt =
∂ut
∂xt

+ βEtµt+1
∂φt
∂xt

for t = 1, 2, ..., T − 1 and µT = ∂uT
∂xT

for t = T . If µt is interpreted as the shadow value of the value

function µt = ∂Vt(xt,zt)
∂xt

, we immediately recognize that the above equation is the envelope condition

of the Bellman equation.

Combining the first-order conditions with the state-transition equation yields nx × T + nx ×
T + na × T system equations

0 =
∂ut
∂at

+ βEtµt+1
∂φt
∂at

,

µt =
∂ut
∂xt

+ βEtµt+1
∂φt
∂xt

, (µT =
∂uT
∂xT

),

xt+1 = φt(xt, at, zt, zt+1), x0 given,

(8)

for the same number of variables (at, xt+1, µt+1)T−1
t=0 . These system equations give the necessary

conditions for optimality and can be solved recursively by backward induction. Suppose we can use

the first of the system equations to solve for at as a function of xt, zt, and µt+1. Substituting at

into the other two system equations, we obtain a system of two first order difference equation for

{xt+1, µt+1}T−1
t=0 . We need two boundary conditions to obtain the solution. Luckily, we have them:
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µT and x0. (In the infinite horizon case, µT is replaced by a transversality condition.)

Example 4.2. The consumption-saving problem solved by maximum principle

The Lagrangian form for the control problem is given by

L = E

[
T−1∑
t=0

βtu(xt −At)− βt+1µt+1(xt+1 −RAt − yt+1) + βTu(xT )

]

Differentiating with respect to At yields

∂u(xt −At)
∂At

+ βREtµt+1 = 0

for t = 0, 1, ..., T − 2, T − 1. Differentiating with respect to xt yields,

µt =
∂u(xt −At)

∂xt

for t = 1, 2, ..., T − 1 and µT = ∂u
∂xT

for t = T .

The system equations are then given by

µt = γe−γ(xt−At), µT = γe−γxT , {t = 1, ..., T − 1}

0 = −γe−γ(xt−At) + βREtµt+1, {t = 0, ..., T − 1}

xt+1 = RAt + yt+1, given x0, {t = 0, ..., T − 1}

By simple algebra, we get from the system equations

e−γ(xt−At) = βREte−γ(RAt+yt+1−At+1), {t = 0, ..., T − 1}, and AT = 0.

This is just the Euler equation obtained using the method of dynamic programming.

The advantage of Maximum principle is that we do not need to study value functions directly

which are complicated objects as shown in the previous section. Instead, the Lagrange multipliers

are the objects to solve for. In addition, this approach can easily handle additional intra-temporal

constraints on states or actions. One only needs to introduce additional Lagrange multipliers and

then apply the Kuhn-Tucker Theorem to derive first-order conditions.

Appendix A. Another form of Lagrangian

In many economic problems, the state-transition equation takes the form xt+1 = φ(xt, at, zt).

In this case, we can replace the Lagrange multiplier βt+1µt+1 with βtλt. The first order conditions

become
∂ut
∂at

+ λt
∂φt
∂at

= 0
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for t = 0, 1, ..., T − 2, T − 1 and

λt = βEt
∂ut+1

∂xt+1
+ βEtλt+1

∂φt+1

∂xt+1

for t = 0, 1, ..., T − 2 and λT−1 = βET−1∂uT (xT , zT )/∂xT .
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