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1. Introduction

Markov decision processes (MDPs) are an extension of Markov process; the difference is the

addition of actions (allowing choice) and rewards (giving motivation). More broadly, a Markov

decision process is a stochastic game with only one player.

MDPs provide a mathematical framework for modeling decision making in situations where

outcomes are both random and under the control of a decision maker. MDPs are useful for studying

a wide range of optimization problems solved via dynamic programming and reinforcement learning.

MDPs were known at least as early as the 1950s (cf. Bellman, 1957). They are used in a wide area

of disciplines, including robotics, automatic control, economics, etc.

Modern macroeconomic dynamics can usually be summarized as a MDP in which an agent

chooses an action in a stochastic dynamical system so as to maximize some objectives.

2. Markov decision process

2.1. Elements

• Decision epochs: T = 0, 1, 2, . . . , T , T ≤ ∞
• States: st ∈ S, called state space

• Actions: at ∈ A; actions can be chosen deterministically or randomly (e.g. mixed strategy in

game theory). Here, only deterministic action is considered.

• Constraint on this action: Γ(st) ⊂ A is the set of feasible actions given current state st;

Γ : S→ A. It is independent on histories.

After choose the action at at state st at time t, the decision maker receives

• One-period reward ut, as a result of choosing action at at state st, the agent receives a

one-period reward ut(st, at), (independent of histories of at or st)

and the system state evolves according to

• the stochastic kernel Pt+1. It is affected by the agent’s current action and state, independent

of future or past.
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These elements constitute what is called Markov decision process. We have assume that S,A,

and Γ are independent of time.

• If T <∞, we will assume that no decision is made in the last period so that the last reward

uT is a function of states only. (bequest value)

• If T =∞, we will assume that ut(st, at) and Pt+1 are independent of time. In this case, the

Markov decision process is stationary.

2.2. Optimality criterion

We assume that the agent maximizes total discounted expected rewards, where the expectation

is over realizations of the states st. We do not discuss non-expected utility models (to address Allais

paradox and the Ellsberg paradox) and non-additive criterion such as recursive utility.

2.3. Policy (Plan)

A policy is a sequence of actions (π0, π1, ..., πT−1) such that π0 ∈ A and St → A is measurable

for t = 1, 2, ..., T − 1. A policy is Markovian if πt is independent of states from time 0 to t− 1. It

is stationary if πt is independent of time t.

Here, the history of states are expressed by st = (s1, ..., st), and St is the associated measurable

space.

3. Optimal stopping

Optimal stopping is a useful class of MDPs. Examples of optimal stopping are abundant

An investor decides whether and when to invest in a project with exogenously given

stochastic payoffs; A firm decides whether and when to enter or exit an industry; A

worker decides whether and when to accept a job offer or to quit his job.

Its characteristics are

• The decision maker’s choice does not affect the stochastic kernel. The only power the agent

has is to choose when to stop;

• The decision is irreversible to some extent;

• There is uncertainty about future rewards or costs.

3.1. Formulation

• States: S = Z ∪ {ŝ}. At time t, after observing the exogenous state zt, the agent decides to

stop or to continue. ŝ is the additional state we introduce to represent stopping.
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• Actions: A = {0, 1} has only two elements 1 (continue) and 0 (stop). Therefore, we have

Γ(s) =

{
{0, 1}, if s ∈ Z,
{1}, if s = ŝ.

• One period reward:

ut(s, a) =


ft(s), if s ∈ Z, a = 1

gt(s), if s ∈ Z, a = 0, t < T,

0, if s = ŝ

That is continuation at date t generates a payoff ft(zt), while stopping at date t yields an

immediate payoff gt(zt) and zero payoff in the future. a = 0 only at the date of stopping.

The last period reward uT is given by uT (s) = h(s), s ∈ Z, if T <∞ and the decision maker

has not chosen to stop before.

• Stochastic kernels: given exogenously and after stopping always remain in state ŝ.

• Optimality criterion: maximization of total discounted expected rewards with discount factor

β

Example 3.1. Firm exit problem

This is a classic problem in macroeconomics and industrial organization. We may describe a

stylized infinite-horizon exit model as follows.

• states zt is stationary and may be interpreted as a demand shock or productivity shock.

• one period reward: ft = ψ(zt)−cf ; gt = ξ. Staying in business at date t generates profits ψ(zt)

and incurs a fixed cost cf > 0. The owner may decide to exit and seek outside opportunities.

Let the outside opportunity value be a constant ξ > 0.

Example 3.2. Secretary problem

This is also a well-known problem. Here, we follow Puterman, 1994.

Consider an employer’s decision to hire an individual to fill a vacancy for a secretarial position.

There are N candidates or applicants for this job, with different abilities. Candidates are interviewed

sequentially. After an interview, the employer decides whether or not to offer the job to the current

candidate. If he does not offer the job to this candidate, the candidate must seek employment

elsewhere. The employer wishes to maximize the probability of giving an offer to the best candidate.

We label the N candidates from 1 to N by their abilities with 1 being the best candidate. The

difficulty of formulating this problem as an optimal stopping problem is to find the stochastic kernel

associated with the evolution of the states. This requires some creativity.

• state space: Z = {0, 1}. 1 denotes that the current one is the best seen so far, and 0 denotes

that a previous one was better. The transition function is given by,

Qt+1(zt; 1) =
1

t+ 1
; Qt+1(zt; 0) =

t

t+ 1
.

Note that Q is independent of current state zt, but is dependent on time.
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• action space: A = {0, 1}. a = 0 means select the current object, and a = 1 means do not

select current object and continue the search.

• one period rewards:

ut(zt) =



ft(zt) = 0, if t < N

gt(zt) =

{
0, for zt = 0

t/N, for zt = 1
, if t < N

h(zT ) =

{
0, for zT = 0

1, for zT = 1
, if t = N

The reward function is very easy to understand. If stopped at time t, the probability of choosing

the best candidate is not 0 only when this candidate is the best among the first t candidates.

The probability of this candidate being the best of all N candidates is given by

Pr(best of N |best of t) =
Pr(best of t|best of N)

Pr(best of t)
Pr(best of N) =

1/N

1/t
=

t

N

where we have used Bayes’ formula.

The optimal stopping problem is a particular example of a class of broader problems known as

discrete choice, where decision maker’s choice can in general affect the evolution of the state or

its stochastic kernel. A classic example may be Rust, 1985.

4. Optimal control

Optimal control is a especially useful class of MDP in macroeconomics. Optimal control prob-

lems describe the evolution of the state system by difference equations instead of transition kernels.

(more conveniently in continuous state space Markov process)

Suppose the state s of the system consists of an endogenous state x ∈ X ⊂ Rnx and an exogenous

state z ∈ Z ⊂ Rnz , i.e., s = (x, z) . Time is denoted by t = 0, 1, 2, ..., T ≤ ∞. The initial state

(x0, z0) is given. The exogenous state evolves according to a time-homogeneous Markov process

with the stationary transition function Q. The endogenous state evolves according to the following

difference equation:

xt+1 = φt(xt, at, zt, zt+1), t = 0, 1, ..., T − 1, (x0, z0) given,

where φt : X × A × Z × Z → X is a measurable function. Note that the decision maker’s choice

at ∈ A ⊂ Rna may affect the above state transition equation. The action at is vector of control

variables.
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4.1. Infinite horizon (T =∞)

We typically consider the time-homogeneous case in which ut = u and φt = φ. The decision

maker’s objective is to choose a feasible policy from (x0, z0) to maximize the total discounted

expected reward:

max
{at}∞t=0

E

[ ∞∑
t=0

βtu(xt, zt, at)

]
subject to

xt+1 = φ(xt, at, zt, zt+1)

In practice, there may also include intra-temporal constraints on the states and actions each period.

4.2. Finite horizon (T <∞)

The decision maker’s objective is to choose a feasible policy (at)
T−1
t=0 from (x0, z0) to maximize

the total discounted expected reward:

max
{at}T−1

t=0

E

[
T−1∑
t=0

βtut(xt, zt, at) + βTuT (xT , zT )

]

subject to xt+1 = φt(xt, at, zt, zt+1).

When the action set A is a finite set, the control problem is a discrete choice problem. When

actions involve both discrete and continuous choices, the problem is often called a mixed stopping

and control problem. Examples include inventory management and optimal investment with fixed

costs. With fixed costs, the decision maker has to decide when to make adjustments as well as

what size of adjustments to make.

5. Multi-armed Bandit

A bandit process is a special type of MDP in which there are just two possible actions:

• a = 1 (continue) produces reward u(xt) and the state changes to xt+1, according to Markov

dynamics Q(xt, xt+1).

• a = 0 (freeze) produces no reward and the state does not change (hence the term ‘freeze’).

A multi-armed Bandit is a collection of Bandit processes. At each time, t ∈ {0, 1, 2, ...T},

• One bandit process is to be activated (pulled/continued). If arm i activated then it changes

state: xi(t)xi(t+ 1) with probability Qi(x, y) and produces reward ui(xi(t)).

• All other bandit processes remain passive (not pulled/frozen).

• Objective: maximize the expected total β-discounted reward

max
{at}

E

[
T∑
t=0

βtuit(xit(t))

]
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where it is the arm pulled at t.

There are many applications of the bandit model in economics and operations research, including

task selection, search, resource allocation, and choice of R&D processes, etc.

Example 5.1. Task selection

sit ∈ [0, 1] represents the degree of completion of task i, i = 1, 2, ..., k. If the decision maker takes

on task i, he receives an expected reward uit(s
i
t). s

i
t is modeled as a Markov process. pi(C|sit) is the

conditional probability of completing task i given the state sit. Therefore, uit = Ripi(C|sit), where Ri

represents the reward if task i is completed. The decision maker can work on only one task at any

time.

Appendix A. Continuous-time Markov decision process

Continuous-time MDPs have applications in queueing systems, epidemic processes, and popu-

lation processes. Recently, continuous time modeling is becoming more popular in economics. Here

we introduce very briefly the continuous-time MDPs.

For continuous-time MDPs, decisions can be made at any time the decision maker chooses. In

comparison to discrete-time Markov decision processes, continuous-time Markov decision processes

can better model the decision making process for a system that has continuous dynamics, i.e., the

system dynamics is defined by partial differential equations (PDEs).

If the state space and action space are finite, we could use linear programming to find the

optimal policy, which was one of the earliest approaches applied. If the state space and action

space are continuous, the optimal criterion could be found by solving Hamilton-Jacobi-Bellman

(HJB) partial differential equation.

References

Bellman, R., 1957. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, first

ed.

Puterman, M. L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

New York: Wiley.

Rust, J., 1985. Stationary equilibrium in a market for durable assets. Econometrica 53, 783–805.

6

https://en.wikipedia.org/wiki/Queueing_system
https://en.wikipedia.org/wiki/Population_process
https://en.wikipedia.org/wiki/Population_process
https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Bellman_equation
https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Bellman_equation

	Introduction
	Markov decision process
	Elements
	Optimality criterion
	Policy (Plan)

	Optimal stopping
	Formulation

	Optimal control
	Infinite horizon (T=)
	Finite horizon (T<)

	Multi-armed Bandit
	Continuous-time Markov decision process

