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1. Stochastic process

The state of a system {Xt} evolves probabilistically in time. The joint probability distribution

is given by Pr(Xt1 , t1;Xt2 , t2;Xt3 , t3; ...;Xtm , tm; ...). (t1 > t2 > ...tm > ...)

Under Markov assumption, i.e. knowledge of the most recent condition determines the future,

the conditional probability distribution is given by

Pr(Xt1 , t1|Xt2 , t2;Xt3 , t3; ...) = Pr(Xt1 , t1|Xt2 , t2)

It is not difficult to see that under the Markov assumption

Pr(Xt1 , t1;Xt2 , t2;Xt3 , t3; ...;Xtm , tm) =Pr(Xt1 , t1|Xt2 , t2)Pr(Xt2 , t2|Xt3 , t3)...

Pr(Xtm−1 , tm−1|Xtm , tm)Pr(Xtm , tm)
(1)

provided that t1 > t2 > ...tm−1 > tm.

For stochastic processes, we have the following identity (law of total probability),

Pr(Xt1 = xt1 |Xt3 = xt3) =
∑
xt2

Pr(Xt1 = xt1 |Xt2 = xt2 ;Xt3 = xt3)Pr(Xt2 = xt2 |Xt3 = xt3)

For Markov process, this can be simplified. If t1 > t2 > t3

Pr(Xt1 = xt1 |Xt3 = xt3) =
∑
xt2

Pr(Xt1 = xt1 |Xt2 = xt2)Pr(Xt2 = xt2 |Xt3 = xt3)

This equation is called Chapman-Kolmogorov equation. If x is continuous, the sum should be

changed to integral and the Chapman-Kolmogorov equation is given by

Pr(xt1 , t1|xt3 , t3) =

∫
dxt2Pr(xt1 , t1|xt2 , t2)Pr(xt2 , t2|xt3 , t3)

2. Discrete state space: Markov chain

If time is discrete [t = 0, 1, ..., T (T ≤ ∞)], the Markov process in this case can be described by

a transition matrix

Pij = Pr(Xt+1 = ej |Xt = ei)
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If the transition matrix does not depend on time, xt is called time-invariant discrete-time

discrete-space Markov process. This kind of Markov process plays an important role in the study

of economic dynamics.

2.1. Properties of the transition matrix

•
∑n

j=1 Pij = 1. A matrix satisfies this property (and Pij ≥ 0 for all i, j) is called a stochastic

matrix.

• A stochastic matrix defines the probabilities of moving from each value of the state to any

other in one period. The probability of moving from one value of the state to any other in

two periods is determined by P 2 as a result of the Chapman-Kolmogorov equation

Pr(Xt+2 = ej |Xt = ei) =

n∑
h=1

Pr(Xt+2 = ej |Xt+1 = eh)Pr(Xt+1 = eh|Xt = ei) =

n∑
h=1

PihPhj = P 2
ij

• By iterating the equation, we have the Pr(Xt+k = ej |Xt = ei) = P k
ij . Therefore, in the case

of Markov chain, the Chapman-Kolmogorov equation is simply

Pr(Xt+m+k = ej |Xt = ei) =
∑
h

Pr(Xt+m+k = ej |Xt+k = eh)Pr(Xt+k = eh|Xt = ei)

=

n∑
h=1

P k
ihP

m
hj = Pm+k

ij

2.2. Time evolution

xt at time t can be described by a vector πt = [πt,1, πt,2, ..., πt,n]′, where πt,j (j = 1, 2, ..., n) is

the probability of xt being ej so that
∑n

j=1 πt,j = 1. As a result, πt evolves as

π′t+1 = π′tP

Example 2.1. Regime shift

Two state representing a boom and a recession, respectively. The transition matrix is given by

P =

[
p 1− p

1− q q

]
, p, q ∈ (0, 1)

The m-step transition matrix is given by

Pm =
1

2− p− q

[
1− q 1− p
1− q 1− p

]
+

(p+ q − 1)m

2− p− q

[
1− p p− 1

q − 1 1− p

]
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Example 2.2. Cyclical moving subset

P =

[
0 P1

P2 0

]

where P1 is a k × (n− k) matrix and P2 is a (n− k)× k matrix. The m-step transition matrix is

given by

P 2m =

[
(P1P2)m 0

0 (P1P2)m

]
, P 2m+1 =

[
0 (P1P2)mP1

(P1P2)mP2 0

]
Example 2.3. Random walk

Fig. 1. Random walk

2.3. Convergence

Does πt converge to a distribution? if the answer is yes, then does the convergent distribution

depend on the initial distribution π0?

If the state space is finite dimensional, we introduce the following theorem to answer the above

questions.

Theorem 2.1. Let P be a stochastic matrix for which P t
ij > 0 for any (i, j) and some value of

t ≥ 1. Then P has a unique stationary distribution, and the process is asymptotically stationary,

i.e. for all initial distribution π0, P∞π0 converges to the same π∞. In this case, limt→∞ P
t
ij = π∞j

for all i, j.

(Proof: see Perron–Frobenius theorem)

Example 2.4. Regime shift (again)

In this example

P∞ =
1

2− p− q

[
1− q 1− p
1− q 1− p

]
Note that if p, q 6= 0, the condition of the theorem is satisfied. We will have one unique stationary

distribution. To find this stationary distribution, notice that a stationary distribution must satisfy

π′ = π′P
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That is to find π satisfying

(I − P ′)π = 0

Therefore, a stationary distribution is an eigenvector (normalized to satisfy
∑n

j=1 πj = 1) associated

with a unit eigenvalue of P ′. As

P =

[
p 1− p

1− q q

]
we have π = 1

2−p−q [1− q, 1− p]′. Therefore, it is true that P∞ij = πj for all i, j.

The fact that P is a stochastic matrix guarantees that P has at least one unit eigenvalue. This

is because P × [1, 1, ..., 1]′ = [1, 1, ..., 1]′. So there is at least one such eigenvector π. However, this

π may not be unique since P can have a repeated unit eigenvalues in general.

2.4. Characterization of stationary distribution

In practice, we often care about the first and second moment of stochastic variables. Below, we

give a simple example.

Example 2.5. Auto-correlation in the steady state

There is a continuum of entrepreneurs. At each date some entrepreneurs are productive (pro-

ductivity xt = α); and the others are unproductive (xt = γ ∈ (0, α)). Each entrepreneur shifts

stochastically between productive and unproductive states following a Markov process. The transi-

tion matrix is

P =

[
1− δ δ

nδ 1− nδ

]
The shifts of the productivity are exogenous and independent across entrepreneurs and over time.

• Q1: Average productivity of entrepreneurs in the steady state

As shown before, the stationary distribution is π = 1
n+1 [n, 1]′. Therefore, the average produc-

tivity is n
n+1α+ 1

n+1γ.

• Q2: Under what condition such that the productivity of each entrepreneur is positively serially

correlated in the steady state?

This is to calculate the autocorrelation function of xs (s represents a time index in the steady

state). We start by calculating the standard deviation of xs, σ(xs).

σ(xs) =

√
nα2 + γ2

n+ 1
−
(
nα+ γ

n+ 1

)2

=

√
n(α− γ)

n+ 1

According to the definition, corr(xs, xs+1) = Cov(xs, xs+1)/σ(xs)/σ(xs+1).

Cov(xs, xs+1) = E(xsxs+1)− E(xs)E(xs+1)
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To calculate E(xsxs+1), we employ the fact that E(xsxs+1) = E[E(xsxs+1|xs)] (total expec-

tation theorem). Therefore,

E(xsxs+1) =
n

n+ 1
α[(1− δ)α+ δγ] +

1

n+ 1
γ[(1− nδ)γ + nδα]

Note that in steady state, E(xs+1) = E(xs),

Cov(xs, xs+1) =
n(α− γ)2(1− δ − nδ)

(n+ 1)2

Therefore, we have corr(xs, xs+1) = 1 − δ − nδ. (As expected, this should not depend on the

value of α and γ) To have positively serially correlation in the steady stated, the probability

of the productivity shifts is not too large: δ + nδ < 1.

3. Continuous state space

For discrete time, the time invariant Markov process can be described by the transition density

D(xt+1|xt).

• Properties of the transition matrix:

– D(xt+1|xt) > 0 and
∫
D(xt+1|xt)dxt+1 = 1

– D(xt+2|xt) =
∫
dxt+1D(xt+2|xt+1)D(xt+1|xt)

• Evolution of the system:

The system at time t can be described by a probability density function πt(xt). The initial

density is given by π0(x0). For all t,
∫
dxtπt(xt) = 1. The evolution of the system is

πt(xt) =

∫
dxt−1D(xt|xt−1)πt−1(xt−1)

A stationary distribution satisfies

π∞(s′) =

∫
dsD(s′|s)π∞(s)ds

3.1. Stochastic linear difference equations

Stochastic linear difference equations are an useful example of continuous-state Markov process.

They are useful because (1) they are tractable; (2) they usually appear to represent an optimum or

equilibrium outcome of agents’ decision making; (3) they usually appear to represent the exogenous

information flows impinging on an economy.

A state vector xt ∈ Rn summarizes the information about the current position of a system. The

initial distribution π0(x0) is Gaussian with mean µ0 and covariance matrix Σ0. The transition den-
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sity D(x′|x) is Gaussian with mean Ax and covariance CC ′. This specification can be represented

in terms of the following equation

xt+1 = Axt + Cwt+1, (2)

where xt is a n × 1 state vector, A is a n × n matrix, C is a n ×m matrix, and wt+1 is an i.i.d

process satisfying wt+1 ≡ N (0, I).

3.1.1. Discussion of wt+1

• In the continuous time Markov process, the Gaussian nature of wt+1 follows in the fact from

the continuity of the process. Here, w represents the Wiener process and dw(t) is Gaussian

with mean 0 and variance dt.

• An important property of the Gaussian distribution: All moments of order higher than 2 can

be expressible in terms of those of order 1 and 2.

• In practice, we usually focus on the first and second moments of xt. The Gaussian assumption

of wt+1 can be relaxed to the following

Ewt+1 = 0 for all t

and

Ewtw
T
t−j =

{
I, if j = 0,

0, if j 6= 0.

A process satisfying the above two conditions is said to be a vector white noise. It is sufficient

to justify the formulas that we report below for the second moments.

Example 3.1. Vector auto regression

Let zt be an n× 1 vector of random variables. We define a VAR of lag order 4 by a stochastic

linear difference equation

zt+1 =

4∑
j=1

Ajzt+1−j + Cywt+1.

We can represent the equation as follows
zt+1

zt

zt−1

zt−2

 =


A1 A2 A3 A4

I 0 0 0

0 I 0 0

0 0 I 0



zt

zt−1

zt−2

zt−3

+


Cy

0

0

0

wt+1

where Aj is an n× n matrix for each j. wt+1 is an n× 1 white noise vector.
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3.2. Characterization of stationary distribution

We care about the properties of xt in the steady state. With Eq. 2, we are not working

directly with the probability distribution of xt as in the case of discrete state space. So what does

stationarity means in this case? There are two important forms of stationarity:

• Strong stationarity

The process xt is strongly stationary if the joint distribution function of (xt1+k, xt2+k, ...

,xts+k) is equal to the joint distribution function of (xt1 , xt2 , ..., xts) for any finite set of time

indices {t1, t2, · · · , ts} and any integer k.

• Weak stationarity

Weakly stationary can also be called covariance-stationary. It is when (1) the first moment

of xt is independent of t; (2) the second moment of xt is finite for all t; (3) cov(xt1 , xt2) =

cov(xt1+h, xt2+h) for all t1, t2 and h.

We now proceed to find the first and second moments of xt and then determine the condition under

which xt is covariance stationary. (In practice, the first and second moments are usually what

people concern.) Taking expectation on both sides of Eq. 2,

〈xt+1〉 = A〈xt, 〉

where E(xt) ≡ 〈xt〉. xt possesses a stationary mean µ satisfying

(I −A)µ = 0.

µ is an eigenvector associated with the single unit eigenvalue (this makes sure that µ is unique) of

A. We will assume that all remaining eigenvalues of A are strictly less than 1 in modulus. Then

the linear system 〈xt+1〉 = A〈xt〉 is asymptotically stable, implying that starting from any initial

condition, 〈xt〉 → µ. This can be shown easily by representing A in Jordan form, A = PJP−1. Here

J is a Jordan matrix. Defining 〈xt〉 = P 〈xt〉∗, we have 〈xt+1〉∗ = J〈xt〉∗. Therefore 〈xt〉∗ = J t〈x0〉∗.
Because the eigenvalue structure of A, J t converges to a matrix of zero except for the (1,1) element.

As a result, 〈xt〉∗ converges to a vector of zero except for the first element, which stays at 〈x0〉∗1,

and 〈xt〉 converges to 〈x0〉∗1P1, where P1 is the eigenvector corresponding to the unit eigenvalue.

For the second moments, we rewrite Eq. 2 as

xt+1 − µ = A(xt − µ) + Cwt+1 (3)

The covariance matrix is defined as Σt = E[(xt − µ)(xt − µ)T ]. According to the above equation,

its law of motion will be

Σt+1 = AΣtA
T + CCT

This is exactly the discrete Lyapunov equation in control theory. The following theorem tells

us the existence and uniqueness of a stationary covariance matrix Σs.
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Theorem 3.1. If the linear system 〈xt+1〉 = A〈xt〉 is asymptotically stable, given any C, there

exists a unique Σs satisfying

Σs = AΣsA
T + CCT

and Σs is positive definite.

The formal solution to Σs is given by

Σs =
∞∑
j=0

AjCCT (AT )j (4)

Numerically, it can be solved by a matlab subroutine doublej.m.

Iterating Eq. 3, we obtain

xt+j − µ = Aj(xt − µ) + Cwt+j + ...+Aj−1Cwt+1.

Therefore the autocovariance function of order j E[(xt+j − µ)(xt − µ)] is given by

E[(xt+j − µ)(xt − µ)] = AjΣs (5)

If Σt achieves stationarity, so as the autocovariance function and it is given by AjΣs.

Example 3.2. AR(1) process

In macroeconomics, the AR(1) process is most commonly used yt = ρyt−1 + σεt + b, where b is

a constant and εt are typically assumed to be uncorrelated N(0, 1) random variables.[
1

yt

]
=

[
1 0

b ρ

][
1

yt−1

]
+

[
0

σ

]
εt (6)

A =

[
1 0

b ρ

]
. Its two eigenvalues are 1 and ρ. So the process will be weakly stationary if |ρ| < 1.

The stationary mean is µ, and Aµ = µ. So µ = [1, b/(1 − ρ)]′ and E[yt] in the steady state is

b/(1−ρ). This result can also be obtained by taking expectation on both sides of yt = ρyt−1 +σεt +b

so that E[yt] = ρE[yt−1] + b. Since E[yt] does not change in the steady state, stationary E[yt] is

simply given by b/(1− ρ).

To find the stationary covariance E[(yt − E(yt))(yt − E(yt))], we define xt = yt − b/(1− ρ) so

that xt = ρxt−1 +σεt. According to Eq. 4, E[(yt−E(yt))(yt−E(yt))] = E(xtxt) =
∑∞

j=0 ρ
jσσρj =

σ2/(1− ρ2).

To find stationary covariance E[(yt+k−E(yt+k))(yt−E(yt))], we use Eq. 5 and get E[xt+kxt] =

ρkE[(xtxt)]. Therefore, E[(yt+k − E(yt+k))(yt − E(yt))] = ρkσ2/(1− ρ2).
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4. Ergodicity theory

Ergodic theory studies dynamical systems with an invariant distribution. It leads to a stunning

result that under certain conditions, the time average of a function along the evolution path is

equal to the space average. For stationary Markov process, we have the following theorem

Theorem 4.1. If a time homogeneous Markov process has a unique stationary distribution, then

it is ergodic.

The property of ergodicity may give us a tremendous computational advantage to calculate

moments of stochastic variables in the computer simulation.

For the theory of ergodicity, we refer the readers to e.g. chapter 4 in Miao, 2014 and references

therein.

Appendix A. Basic concepts in stochastic processes

The modern formalism used by mathematicians to describe probability involves a number of

concepts, predefined structures, and jargon. This modern formalism is not required to understand

probability theory. Nevertheless, research work that is written in this modern language is not

accessible unless you know the jargon. Unfortunately a considerable investment of effort is required

to learn modern probability theory in its technical detail: significant groundwork is required to

define the concepts with the precision demanded by mathematicians. Here we present the concepts

and jargon of modern probability theory without the rigorous mathematical technicalities. There

are many good textbooks that present the details of the modern formalism; we recommend, for

example, the excellent and concise text by Williams, 1991.

Definition A.1. Probability space

A probability space is a mathematical object consisting of three elements:

• Ω, sample space of possible outcome ω

• F , The collection of events (Each possible subset of the samples space is called an event) is

called the σ-algebra.

• P, a measure that assigns probability values to those events. Associating a number (in our case

the probability) with every element of a σ-algebra is called a measure. (It is from integration

that the notion of a measure first sprung.)
∫

Ω P(dω) = 1

A.1. σ-algebra

Algebra, is a collection of objects, along with a number of mathematical operations that can be

performed on the objects. To be an ‘algebra’ the collection must be closed under the operations.

Operations can take one object, in which case they produce a second object, and are referred to as

unary; Operations may also take two objects, in which case they produce a third object, and are

referred to as binary.
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The collection of events could form an algebra. There could be three operations associated with

it:

• union (binary operation): A ∪B
• intersection: A ∩B
• complement (unary operation): A{. The whole sample space is Ω = A ∪A{.

A σ-algebra (F) is special kinds of family of events that satisfy three properties:

(1) Ω ∈ F ,

(2) F is closed under complementation, A ∈ F → A{ ∈ F ,

(3) F is closed under countable union: if {Ai}∞i=1 is a sequence of sets such that Ai ∈ F , then

(∪∞i=1Ai) ∈ F .

Example A.1. Borel σ-algebra

Consider a real variable x, where x can take any value on the real line. The set of all values of

x is the sample space, Ω. All the open intervals on the real line a σ-algebra. (or in N dimension,

all the open N -dimensional cubes in RN forms a σ-algebra.)

Definition A.2. Random variable

A random variable is a function whose domain is the set of events Ω and whose image is the

real numbers. It is actually a function from the sample space, to a set of values.

X is a random variable that takes values on the real line, and is defined by the function f(ω).

The probability that −∞ < X < x (recall that this is the probability distribution for x) is obtained

by

D(x) ≡ Pr(X ∈ (−∞, x]) = P(f−1(−∞, x]))

if for any x, f−1(−∞, x) ∈ F . We call X is F measurable. If X is F-measurable, we can sensibly

talk about the probability of X taking values in virtually any subset of the real line you can think

of (the Borel sets). That is f−1 can map any Borel set to an element in F .

Definition A.3. Stochastic processes Xt

A sequence of σ-algebras that describes what information we have access to at successive times

is called a filtration

{Ft}∞t=1 : F1 ⊆ F2 ⊆ F3... ⊆ F .

Let a sequence of random variables xt be Ft-measurable for each t, which models a stochastic

process. For example, consider an ω ∈ Ω, and choose an α ∈ R. Then for each t, the set {ω :

xt(ω) < α} will be a set included in the collection Ft. Since Ft ⊆ F for all t, the set also belongs

to F . Hence, we can assign probability to the set using the measure P. This collection of objects is

called a filtered probability space, or just filtered space, and usually written as (Ω,F ,Ft,P).
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